تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)63767652396417110
مجاني
المفضلة
مشاركة

15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)

addressF5HW+FGX, Vaiaku, Tuvalu

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

انضم إلينا في اليوم الأول من سلسلة فعاليات افتراضية للاستماع إلى خبراء حول آخر التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **المكان** افتراضي. [سجّل الدخول عبر Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية بيانات ثلاثية الأبعاد ضخمة ومتنوعة. ولكن جمع وتصنيف سحب نقاط ليدار من العالم الحقيقي على نطاق واسع أمرٌ مكلفٌ وجديرٌ بالوقت، خاصةً عند الحاجة إلى تسميات عالية الجودة. يقدم Paved2Paradise بديلاً اقتصاديًا: خط أنابيب محاكاة ليدار قابل للتوسيع لإنشاء مجموعات بيانات واقعية ومُصنفة بالكامل مع أقل جهد بشري في التصنيف. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح خلفية (مثل الحقول، الطرق، مواقع البناء) ومسح كائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. من خلال الجمع الذكي بين هذين المصدرَين، يمكن لـ Paved2Paradise توليد مجموعة كبيرة من مشاهد التدريب المختلفة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار واسع النطاق للخلفية، (2) تسجيل مسح عالي الدقة لكائنات الهدف في ظروف مضبوطة، (3) إدخال الكائنات في الخلفيات مع وضع وحجب يتماشى مع القوانين الفيزيائية، و(4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها باستخدام Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتُحقق أداءً قويًا في الكشف مع تقليل كبير في التصنيف اليدوي مقارنةً بجمع مجموعات البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل أيضًا مرنة – تتيح للممارسين توسيعها بسهولة إلى فئات أو مجالات كائنات جديدة عن طريق استبدال مسح الخلفية أو الكائنات. بالنسبة لممارسي التعلم الآلي العاملين في مجالات الروبوتات، المركبات المستقلة، أو إدراك التطبيقات الحرجة للسلامة، يسلط Paved2Paradise الضوء على مسار عملي لتوسيع بيانات التدريب دون زيادة التكاليف. وهو يسد الفجوة بين المحاكاة والأداء في العالم الحقيقي، مما يتيح تكرارًا أسرع ونشرًا أكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس تعلم آلي أول في شركة John Deere\، حيث يطور نماذج التعلم العميق للإدراك باستخدام الليدار والصور ذات القنوات الثلاث (RGB) في أنظمة تتطلب السلامة\-وتُعمل في الوقت الفعلي\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة الزمكانية\، ويحمل أيضًا شهادة دبلوم دراسات عليا في الرياضيات\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، وكانت ورقة \(batter\|pitcher\)2vec الخاصة به فائزة بجائزة في مؤتمر MIT Sloan Sports Analytics Conference لعام 2018\. كما ساهم برمجيًا في scikit\-learn وApache Solr\، وقد استُخدم مستودعه على GitHub —الذي حصل مجتمعًا على أكثر من 2\,100 نجمة— كنقطة بداية لأبحاث وأكواد إنتاجية في العديد من المؤسسات المختلفة\. **MothBox: جهاز رصد حشرات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية مفتوحة المصدر مثيرة جديدة، Mothbox. مشروع Mothbox هو مشروع فائز بجوائز لمراقبة واسعة النطاق للحشرات من أجل التنوع البيولوجي. إنه جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، ويأخذ صورًا عالية الدقة جدًا ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نطور نسخة جديدة قابلة للإنتاج لتعميم هذه الأداة المهمة عالميًا. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل Cartoon Network وIDEO وSmithsonian، ودرّس كأستاذ متفرغ في الجامعة الوطنية السنغافورية، وحتى تحولت أبحاثه إلى سلسلة تلفزيونية (سخيفة) بعنوان "Hacking the Wild"، تم توزيعها بواسطة Discovery Networks. حاليًا، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس ورشة عمل مختبرات Digital Naturalism Laboratories. في غابة الأمطار في جامبوا، بنما، يدمج Dinalab العمل الميداني البيولوجي مع الصنع التكنولوجي ضمن مجتمع من العلماء والفنيين والفنانين والمهندسين المحليين والدوليين، بالإضافة إلى مختصي إعادة تأهيل الحيوانات. وحاليًا، يعمل أيضًا كأستاذ مشارك مستشار للطلاب في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من أسلوب جديد لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أحدث الأبحاث المتعلقة بتمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب أو من خلال التخصيص الدقيق (fine-tuning). على وجه التحديد، سأتناول العمل المشترك حول RELOCATE، وهي معيار بسيط لا يتطلب تدريبًا مخصصًا، صُمم لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلامات البصرية في مقاطع فيديو طويلة. لإزالة الحاجة إلى تدريب خاص بالمهمة ومعالجة مقاطع الفيديو الطويلة بكفاءة، يستفيد RELOCATE من تمثيل مبني على المناطق مستمد من نماذج بصرية مسبقة التدريب. سأناقش أيضًا العمل المشترك حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الطلبات التي تتطلب فهمًا شاملاً مكانزمنيًا: فالنماذج MLLMs تواجه صعوبة في الإجابة على طلبات تشير إلى 1) بيئة كاملة يمكن لوكيل مزوّد بنموذج MLLM العمل فيها؛ وفي نفس الوقت تشير أيضًا إلى 2) أفعال حدثت حديثًا وتم ترميزها في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكانزمني مهم للوكلاء الذين يعملون في العالم الحقيقي. يشمل حلنا تطوير خط أنابيب مخصص لجمع البيانات وتخصيص نموذج MLLM مجهز بمشعّات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الحديثة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-แชมبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. حصل على بكالوريوس الهندسة الكهربائية وهندسة المعلومات والتكنولوجيا من الجامعة التقنية في ميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. بعد ذلك انضم إلى جامعة تورونتو كزميل باحث حتى عام 2016. تتركز اهتماماته البحثية في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية حول مواضيع في فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. تم منح أطروحته للدكتوراه ميدالية ETH، وحاز بحث فريقه على جائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ تغييرًا في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لصنع فرق حقيقي؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ مشكلات المحاصيل ويحللها باستخدام صحة أوراق البن كمثال رئيسي. سنبدأ بنظرية أساسية، ثم ندرس كيف تكتشف هذه النماذج صدأ الورقة وأضرار المنجر في صور الأوراق. تشمل الجلسة سير عمل شاملًا عمليًا باستخدام أدوات FiftyOne مفتوحة المصدر للرؤية الحاسوبية، ويتناول تنقيح مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية وتجربة عملية في تطبيق هذه الأساليب على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية والتعلم الآلي، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. تعمل على تطوير تقنيات هندسية متكاملة جديدة، خاصة في مجالات الرؤية الحاسوبية، والروبوتات، والتعلم الآلي المطبقة على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.

المصدر:  meetup عرض المنشور الأصلي

موقع
F5HW+FGX, Vaiaku, Tuvalu
عرض الخريطة

meetup
كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.