انضم إلينا في اليوم الأول من سلسلة فعاليات افتراضية للاستماع إلى متحدثين خبراء حول آخر التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **المكان** افتراضي. [سجّل الدخول عبر زووم.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية مجموعات بيانات ضخمة ومتنوعة ثلاثية الأبعاد. ولكن جمع وتصنيف سحب نقاط ليدار من العالم الحقيقي على نطاق واسع أمر مكلف وجهد كبير، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم Paved2Paradise بديلاً اقتصاديًا: خط أنابيب محاكاة ليدار قابل للتوسيع يُنتج مجموعات بيانات واقعية ومصنفة بالكامل مع أقل جهد بشري في التصنيف. الفكرة الأساسية هي "تحليل الواقع" من خلال التقاط عمليات مسح الخلفية (مثل الحقول، الطرق، مواقع البناء) ومسح الكائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise تركيب عدد كبير جدًا من مشاهد التدريب المختلفة. يتضمن الخط الأنابيب أربع خطوات: (1) جمع مسح ليدار واسع النطاق للخلفية، (2) تسجيل مسح عالي الدقة لكائنات الهدف في ظروف مضبوطة، (3) إدخال الكائنات داخل الخلفيات مع وضع وحجب يتماشيان مع القوانين الفيزيائية، (4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها باستخدام Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتصل إلى أداء قوي في الكشف مع حاجة أقل بكثير للتصنيف اليدوي مقارنةً بجمع مجموعات البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل مرنة أيضًا — مما يتيح للممارسين توسيع النموذج بسهولة إلى فئات أو مجالات كائنات جديدة عن طريق استبدال مسحات الخلفية أو الكائنات. بالنسبة لممارسي تعلم الآلة العاملين في الروبوتات، أو المركبات المستقلة، أو أنظمة الإدراك الحرجة للسلامة، يسلط Paved2Paradise الضوء على طريق عملي لتوسيع بيانات التدريب دون توسيع التكاليف. وهو يسد الفجوة بين المحاكاة والأداء في العالم الحقيقي، ويتيح تكرارًا أسرع ونشرًا أكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألْكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي في تعلم الآلة في شركة جون دير، حيث يطور نماذج التعلم العميق للإدراك باستخدام بيانات الليدار والصور RGB لأنظمة تتطلب السلامة وتكون فورية الزمن. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية، كما يحمل تخصصًا فرعيًا في الرياضيات. وقد تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind، وجوجل، وفيسبوك، ومايكروسوفت، وOpenAI، من بين آخرين، كما فاز بجائزة في مؤتمر MIT Sloan Sports Analytics لعام 2018 عن ورقة \(batter\|pitcher\)2vec الخاصة به. كما ساهم برمجيًا في scikit\-learn وApache Solr، وقد تم استخدام مستودعاته على GitHub — التي حصلت مجتمعة على أكثر من 2\,100 نجمة — كنقطة بداية لأبحاث وأكواد إنتاجية في العديد من المؤسسات المختلفة. **MothBox: جهاز رصد حشرات منخفض التكلفة، مفتوح المصدر، وآلي** سيتحدث الدكتور آندي كوتميير عن تصميم أداة علمية جديدة ومثيرة مفتوحة المصدر، وهي Mothbox. مشروع Mothbox هو مشروع فائز بجوائز لمراقبة الحشرات على نطاق واسع من أجل التنوع البيولوجي. إنها أداة منخفضة التكلفة تم تطويرها في غابات بنما القاسية، تقوم بالتقاط صور عالية الدقة جدًا ثم تحديد تلقائي لمستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات وعشرات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير إصدار جديد قابل للإنتاج لتعميم هذه الأداة المهمة عالميًا. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كوتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل Cartoon Network وIDEO وSmithsonian، ودرّس كأستاذ محاضر في الجامعة الوطنية السنغافورية، وتحولت أبحاثه حتى إلى برنامج تلفزيوني (مضحك) اسمه "Hacking the Wild"، تم توزيعه عبر Discovery Networks. حالياً، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، ومؤخرًا أسس ورشة تصنيع في موقع ميداني باسم Digital Naturalism Laboratories. في غابة الأمطار في جامبوا ببنما، تدمج Dinalab العمل الميداني البيولوجي مع الصناعة التكنولوجية ضمن مجتمع من العلماء والفنانين والمهندسين ومتخصصي إعادة تأهيل الحيوانات المحليين والدوليين. وحاليًا، يعمل أيضًا كأستاذ مشارك في جامعة واشنطن، حيث يقدم الإرشاد للطلاب. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من طريقة جديدة لمعالجة المهام، مستفيدة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أبحاثًا حديثة حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب أو عبر عملية ضبط دقيق (fine-tuning). على وجه التحديد، سأناقش عملًا مشتركًا حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. لإزالة الحاجة إلى تدريب مخصص للمهمة ومعالجة مقاطع الفيديو الطويلة بكفاءة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج بصرية مُدرّبة مسبقًا. كما سأناقش عملًا مشتركًا حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) للإجابة الصحيحة على الأوامر التي تتطلب فهمًا شاملاً مكانيًا-زمانيًا: تعاني النماذج الكبيرة متعددة الوسائط من صعوبة في الإجابة على الأوامر التي تشير إلى 1) بيئة كاملة يمكن لعامل مزود بنموذج MLLM العمل فيها؛ وكذلك تشير في الوقت نفسه إلى 2) إجراءات حديثة حدثت للتو وتم ترميزها في مقطع فيديو. لكن مثل هذا الفهم الشامل المكاني-الزماني مهم للوكلاء الذين يعملون في العالم الحقيقي. يشمل حلنا تطوير خط أنابيب مخصص لجمع البيانات وضبط دقيق لنموذج MLLM مجهز بمشعّات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للمشاهدات الحديثة. *عن المتحدث* [أليكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شامبين، يعمل مع طلاب موهوبين في موضوعات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. حصل على بكالوريوس ودبلومه في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية بميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. بعد ذلك انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى عام 2016. تتركز اهتماماته البحثية في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية حول فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. وقد حصلت أطروحته للدكتوراه على ميدالية ETH، وحاز بحث فريقه على جائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** إن كشف الشذوذ يحوّل التصنيع والمراقبة، لكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي بالفعل اكتشاف أمراض النباتات وأضرار الآفات في وقت مبكر بما يكفي لصنع فرق؟ يوضح هذا الحديث كيف يقوم كشف الشذوذ بتحديد وتحديد مواقع مشكلات المحاصيل باستخدام صحة أوراق القهوة كمثال رئيسي. سنبدأ بالنظرية الأساسية، ثم نحلل كيف تكتشف هذه النماذج صدأ الأوراق وأضرار المنشار في الصور. تشمل الجلسة سير عمل شاملاً عمليًا باستخدام أدوات FiftyOne مفتوحة المصدر للرؤية الحاسوبية، ويتناول تنقيح مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية وتجربة عملية في تطبيق هذه التقنيات على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [باولا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية وتعلم الآلة، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. تعمل على تطوير تقنيات هندسية متكاملة جديدة، خاصة في مجالات الرؤية الحاسوبية، والروبوتات، وتعلم الآلة المطبقة على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.