تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)63763088867202110
مجاني
المفضلة
مشاركة

15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)

addressF5HW+FGX, Vaiaku, Tuvalu

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى خبراء حول آخر التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **المكان** افتراضي. [سجّل الدخول عبر زووم.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع من أجل الإدراك في العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج إدراك قوية للروبوتات والاستقلالية وجود مجموعات بيانات ضخمة ومتنوعة ثلاثية الأبعاد. ولكن جمع وتصنيف سحب نقاط ليدار من العالم الحقيقي على نطاق واسع أمر مكلف وطويل، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم مشروع Paved2Paradise بديلاً اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع لإنتاج مجموعات بيانات واقعية ومصنفة بالكامل مع الحد الأدنى من الجهد البشري في التسمية. الفكرة الأساسية هي "تحليل الواقع" من خلال التقاط فحوصات خلفية (مثل الحقول والطرق ومواقع البناء) وفحوصات كائنات (مثل المركبات والأشخاص والآلات) بشكل منفصل. ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise توليد عدد كبير من مشاهد التدريب المتنوعة. ويتألف الخط الأنابيب من أربع خطوات: (1) جمع فحوصات ليدار واسعة النطاق للخلفية، (2) تسجيل فحوصات عالية الدقة لكائنات الهدف في ظروف خاضعة للرقابة، (3) إدخال الكائنات في الخلفيات مع وضع وحجب يتماشيان مع القوانين الفيزيائية، و(4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدرّبة باستخدام بيانات تم إنشاؤها بواسطة Paved2Paradise تنعكس بفعالية على العالم الحقيقي، حيث تحقق أداءً قويًا في الكشف مع حاجة أقل بكثير للتسمية اليدوية مقارنةً بجمع مجموعة البيانات التقليدية. هذه الطريقة ليست فقط فعالة من حيث التكلفة، بل أيضًا مرنة — مما يتيح للممارسين توسيعها بسهولة إلى فئات أو مجالات كائنات جديدة عن طريق استبدال فحوصات الخلفية أو الكائنات. بالنسبة لممارسي التعلم الآلي العاملين في مجالات الروبوتات أو المركبات ذاتية القيادة أو أنظمة الإدراك الحرجة للسلامة، فإن Paved2Paradise يبرز مسارًا عمليًا نحو توسيع بيانات التدريب دون زيادة التكاليف. كما يُغلق الفجوة بين المحاكاة والأداء في العالم الحقيقي، ما يتيح التكرار السريع والنماذج أكثر موثوقية عند النشر. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس تعلم آلي أول في شركة John Deere\، حيث يطور نماذج التعلم العميق للإدراك باستخدام الليدار و.RGB في أنظمة حساسة للسلامة وتُعمل في الزمن الحقيقي\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية\، ويحمل أيضًا شهادة ثانوية في الرياضيات\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، كما فاز ورقة \(batter\|pitcher\)2vec الخاصة به بجائزة في مؤتمر MIT Sloan Sports Analytics Conference عام 2018\. كما ساهم برمجيًا في scikit\-learn وApache Solr\، وقد استُخدم مستودعاته على GitHub—التي حصلت مجتمعة على أكثر من 2\,100 نجمة—كمصدر بداية لأكواد بحثية وإنتاجية في العديد من المؤسسات المختلفة\. **MothBox: جهاز رصد حشرات منخفض التكلفة، مفتوح المصدر، وأوتوماتيكي** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية مفتوحة المصدر ومثيرة، تُعرف باسم Mothbox. يعد مشروع Mothbox مشروعًا فائزًا بجائزة لمراقبة الحشرات على نطاق واسع من أجل التنوع البيولوجي. إنه جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، ويقوم بالتقاط صور فائقة الدقة ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. وبعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما وبيرو والمكسيك والإكوادور والولايات المتحدة، نحن الآن نعمل على تطوير نسخة جديدة قابلة للتصنيع لنشارك هذه الأداة المهمة في جميع أنحاء العالم. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته في دراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل شبكة كرتون نتورك وIDEO ومؤسسة سميثسونيان، ودرّس كأستاذ محاضر في الجامعة الوطنية السنغافورية، وحتى تحولت إحدى أبحاثه إلى سلسلة تلفزيونية (مضحكة) بعنوان "Hacking the Wild"، تم توزيعها عبر Discovery Networks. حالياً، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس مختبر الحرف الرقمية (Digital Naturalism Laboratories)، وهو مكان مخصص للصناعات الحرفية العلمية في الميدان. في غابة جامبوا المطيرة في بنما، يدمج Dinalab بين العمل الميداني البيولوجي والصناعة التكنولوجية مع مجتمع من العلماء والفنيين والفنانين ومحسنّي الحيوانات المحليين والدوليين. وهو حاليًا يستشار أيضًا كأستاذ مشارك في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من أسلوب جديد لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش الأبحاث الحديثة حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب (zero-shot) أو عبر عملية ضبط دقيق (fine-tuning). وسأتناول بشكل خاص العمل المشترك حول RELOCATE، وهي معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب خاص بكل مهمة وللتعامل بكفاءة مع مقاطع الفيديو الطويلة، تعتمد RELOCATE على تمثيل مبني على المناطق مستمد من نماذج بصرية مسبقة التدريب. كما سأناقش العمل المشترك حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الطلبات التي تتطلب فهمًا شاملاً مكانياً-زمنياً: فالنماذج MLLMs تجد صعوبة في الإجابة على الطلبات التي تشير إلى 1) البيئة الكاملة التي يمكن لوكيل مزوّد بنموذج MLLM العمل فيها؛ وفي نفس الوقت تشير أيضًا إلى 2) الإجراءات الأخيرة التي حدثت للتو والتي تم ترميزها في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل مكانياً وزمنياً مهم للوكلاء الذين يعملون في العالم الحقيقي. ويتضمن حلنا تطوير خط أنابيب مخصص لجمع البيانات وضبط دقيق لنموذج MLLM مجهز بمشعّات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الأخيرة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شمباين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي والذكاء الاصطناعي التوليدي والرؤية الحاسوبية. حصل على بكالوريوس ودبلومه في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. بعد ذلك انضم إلى جامعة تورونتو كزميل باحث ما بعد الدكتوراه حتى عام 2016. تشمل اهتماماته البحثية مجالات الذكاء الاصطناعي والذكاء الاصطناعي التوليدي والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية حول فهم المشهد وخوارزميات الاستدلال والتعلم والتعلم العميق ومعالجة الصور واللغة والنماذج التوليدية. ونالت أطروحته للدكتوراه ميدالية ETH، كما حصل فريقه البحثي على جائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ تغييرًا في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي أن يكتشف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لتحقيق فرق؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ مشكلات المحاصيل ويحلل مواقعها باستخدام صحة أوراق القهوة كمثال رئيسي. سنبدأ بالنظرية الأساسية، ثم ندرس كيف تكشف هذه النماذج عن الصدأ وأضرار المنقي في صور الأوراق. تشمل الجلسة سير عمل شاملة وعملية باستخدام أدوات FiftyOne مفتوحة المصدر للرؤية الحاسوبية، وتشمل تنسيق مجموعة البيانات واستخراج القطع الصغيرة (patches) وتدريب النموذج وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية، بالإضافة إلى خبرة عملية في تطبيق هذه الأساليب على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) حاصلة على دكتوراه في الرؤية الحاسوبية والتعلم الآلي، ولديها أكثر من 20 سنة من الخبرة في المجال التكنولوجي. تعمل على تطوير تقنيات هندسية متكاملة مبتكرة، خاصة في مجالات الرؤية الحاسوبية والروبوتات والتعلم الآلي المطبّق على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.

المصدر:  meetup عرض المنشور الأصلي

موقع
F5HW+FGX, Vaiaku, Tuvalu
عرض الخريطة

meetup

قد يعجبك أيضا

كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.