انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى خبراء حول آخر التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **المكان** افتراضي. [سجّل الدخول عبر زووم.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية بيانات ثلاثية الأبعاد ضخمة ومتنوعة. ولكن جمع وتصنيف سحب نقاط ليدار من العالم الحقيقي بحجم كبير أمر مكلف وجهد يستغرق وقتًا طويلاً، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم Paved2Paradise بديلًا اقتصاديًا: خط أنابيب محاكاة ليدار قابل للتوسيع يولد مجموعات بيانات واقعية ومصنفة بالكامل مع الحد الأدنى من الجهد البشري في التصنيف. الفكرة الأساسية هي "تحليل الواقع" من خلال التقاط فحوص الخلفية (مثل الحقول، الطرق، مواقع البناء) وفحوص الكائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise تركيب عدد كبير جدًا من مشاهد التدريب المتنوعة. يتضمن الخط أنابيب أربع خطوات: (1) جمع فحوص ليدار واسعة النطاق للخلفية، (2) تسجيل فحوص ليدار عالية الدقة لكائنات مستهدفة في ظروف مضبوطة، (3) إدخال الكائنات في الخلفيات مع وضع وحجب يتماشيان مع القوانين الفيزيائية، و(4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها بواسطة Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتُحقق أداءً قويًا في الكشف مع حاجة أقل بكثير للتسمية اليدوية مقارنةً بجمع مجموعة البيانات التقليدي. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل مرنة أيضًا — مما يسمح للممارسين بسهولة التوسع إلى فئات كائنات جديدة أو مجالات جديدة عن طريق استبدال فحوص الخلفية أو الكائنات بغيرها جديدة. بالنسبة لممارسي تعلم الآلات العاملين في الروبوتات، أو المركبات المستقلة، أو أنظمة الإدراك الحرجة للسلامة، يبرز Paved2Paradise طريقًا عمليًا نحو توسيع بيانات التدريب دون زيادة التكاليف. وهو يسد الفجوة بين المحاكاة والأداء في العالم الحقيقي، ويتيح التكرار الأسرع والنشر الأكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألْكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي للتعلم الآلي في شركة John Deere\، حيث يطوّر نماذج التعلّم العميق للإدراك باستخدام ليدار وRGB لأنظمة حرجة للسلامة وتعمل في الزمن الحقيقي\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية\، وله أيضًا شهادة دبلوم دراسات عليا في الرياضيات\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، كما فاز ورقته \(batter\|pitcher\)2vec بجائزة في مؤتمر MIT Sloan Sports Analytics Conference لعام 2018\. كما ساهم برمجيات تعلم آلي إلى scikit\-learn وApache Solr\، وقد تلقّت مستودعاته على GitHub والتي بلغت معًا أكثر من 2\,100 نجمة، دعمًا كنقاط بداية لأبحاث وأكواد إنتاجية في العديد من المؤسسات المختلفة\. **MothBox: جهاز رصد حشرات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كويتماير عن تصميم أداة علمية جديدة ومثيرة ومفتوحة المصدر، Mothbox. يعد مشروع Mothbox مشروعًا فائزًا بجائزة لمراقبة واسعة النطاق للحشرات بهدف التنوع البيولوجي. إنه جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، ويقوم بالتقاط صور فائقة الدقة ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير نسخة جديدة قابلة للتصنيع لنشارك هذه الأداة المهمة حول العالم. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كويتماير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل شبكة كرتون نتورك، IDEO، والSmithsonian، ودرّس كأستاذ على مسار الترقي الوظيفي في الجامعة الوطنية السنغافورية، وحتى تم تحويل بحثه إلى سلسلة تلفزيونية (مضحكة) بعنوان "Hacking the Wild"، تم توزيعها عبر Discovery Networks. حالياً، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، ومؤخرًا أسس ورشة تصنيع مختبرات Digital Naturalism Laboratories. في غابة مطر غامبوا في بنما، تدمج Dinalab العمل الميداني البيولوجي مع الصناعة التكنولوجية ضمن مجتمع من العلماء والفنيين والمهندسين والفنانين المحليين والدوليين، بالإضافة إلى المختصين بإعادة تأهيل الحيوانات. وحاليًا يشرف أيضًا على طلاب كبروفيسور متعاون في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من طريقة جديدة لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أبحاثًا حديثة حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب (zero-shot) أو عبر الضبط الدقيق (fine-tuning). على وجه التحديد، سأناقش عملًا مشتركًا حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مخصصًا، صُمم لأداء مهمة صعبة وهي تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب خاص بالمهمة وللتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج بصرية مسبقة التدريب. كما سأناقش أيضًا عملًا مشتركًا حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) للإجابة الصحيحة على الأوامر التي تتطلب فهمًا شاملاً مكانيًا-زمانيًا: فالنماذج MLLMs تجد صعوبة في الإجابة على أوامر تشير إلى 1) البيئة بأكملها التي يمكن لوكيل مزود بنموذج MLLM العمل فيها؛ وفي الوقت نفسه تشير أيضًا إلى 2) الإجراءات الأخيرة التي حدثت للتو والمُرمَّزة في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكاني-الزماني مهم للوكلاء الذين يعملون في العالم الحقيقي. ويتضمن حلنا تطوير خط أنابيب مخصص لجمع البيانات وضبط نموذج MLLM مزود بمشعّات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للمشاهدات الأخيرة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-แชมبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. تلقّى شهادة البكالوريوس والدبلوم في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية بميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ في عام 2014. وبعد ذلك انضم إلى جامعة تورونتو كزميل باحث حتى عام 2016. تشمل اهتماماته البحثية مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية في مواضيع تشمل فهم السيناريوهات، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. ونالت أطروحته للدكتوراه ميدالية ETH، وحاز بحث فريقه على جائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** إن كشف الشذوذ يُحدث ثورة في التصنيع والمراقبة، لكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات في وقت مبكر بما يكفي لصنع فرق؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ ويحلل مشكلات المحاصيل باستخدام صحة أوراق البن كمثالنا الرئيسي. سنبدأ بالنظرية الأساسية، ثم ندرس كيف تكتشف هذه النماذج الصدأ وأضرار المنّ في صور الأوراق. تشمل الجلسة عملية عمل شاملة تطبيقية باستخدام أدوات FiftyOne المفتوحة المصدر للرؤية الحاسوبية، وتغطي إدارة مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وتصور النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية، وكذلك على خبرة عملية في تطبيق هذه الأساليب على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [باولا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية وتعلّم الآلة، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وهي تعمل على تطوير تقنيات هندسية متكاملة جديدة، بشكل رئيسي في مجالات الرؤية الحاسوبية، والروبوتات، وتعلّم الآلة المطبقة على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.