انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى خبراء حول أحدث التطورات في مجال التقاء الذكاء الاصطناعي البصري بالزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **المكان** افتراضي. [سجّل الدخول عبر Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج إدراك قوية للروبوتات والاستقلالية بيانات ضخمة ومتنوعة ثلاثية الأبعاد. ولكن جمع وترميز سحب ليدار من العالم الحقيقي بحجم كبير أمر مكلف وطويل جدًا، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم Paved2Paradise بديلًا اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع لإنتاج بيانات واقعية ومكتملة الترميز بجهد بشري ضئيل جدًا في التسمية. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح خلفي بشكل منفصل (مثل الحقول، الطرق، مواقع البناء) ومسح كائنات (مثل المركبات، الأشخاص، الآلات). من خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise توليد عدد كبير جدًا من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار خلفي واسع النطاق، (2) تسجيل مسح عالي الدقة للكائنات المستهدفة في ظروف مضبوطة، (3) إدخال الكائنات في الخلفيات مع وضع وحجب يتماشى مع القوانين الفيزيائية، (4) محاكاة هندسة الليدار لضمان الواقعية. تُظهر التجارب أن النماذج المدربة على بيانات تم إنشاؤها بواسطة Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتحقق أداءً قويًا في الكشف مع تقليل كبير في الترميز اليدوي مقارنةً بجمع البيانات التقليدي. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل مرنة أيضًا—تتيح للممارسين التوسع بسهولة إلى فئات أو مجالات كائنات جديدة عن طريق استبدال مسح الخلفية أو الكائنات بمسوح جديدة. بالنسبة لممارسي التعلم الآلي العاملين في مجالات الروبوتات، المركبات الذاتية القيادة، أو أنظمة الإدراك الحرجة للسلامة، يبرز Paved2Paradise طريقًا عمليًا نحو توسيع بيانات التدريب دون توسيع التكاليف. وهو يُقلّص الفجوة بين أداء المحاكاة والعالم الحقيقي، مما يتيح تكرارًا أسرع ونشرًا أكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس تعلم آلي أول في شركة جون دير، حيث يُطوّر نماذج تعلّم عميق للإدراك باستخدام بيانات الليدار والصورة الحمراء-الخضراء-الزرقاء (RGB) في أنظمة تتطلب السلامة وتُعمل في الوقت الفعلي. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن، مع أطروحة حول تحسين رؤية الحاسوب والشبكات العصبية العميقة المكانية-الزمنية، كما يمتلك تخصصًا فرعيًا في الرياضيات. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind، جوجل، ميتا، مايكروسوفت، وOpenAI، من بين آخرين، كما فاز ورقة بحثية له بعنوان \(batter\|pitcher\)2vec بجائزة في مؤتمر MIT Sloan لتحليلات رياضة 2018. كما ساهم برمجيًا في مكتبات scikit\-learn وApache Solr، وقد استُخدمت مستودرات GitHub الخاصة به—التي حصلت مجتمعة على أكثر من 2\,100 نجمة—كنقاط بداية لأبحاث وشفرات إنتاجية في العديد من المؤسسات المختلفة. **MothBox: جهاز رصد حشرات منخفض التكلفة، مفتوح المصدر، وآلي** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية مفتوحة المصدر ومثيرة جديدة، Mothbox. يعد Mothbox مشروعًا فائزًا بجائزة لمراقبة واسعة النطاق للحشرات من حيث التنوع البيولوجي. وهو جهاز منخفض التكلفة تم تطويره في الغابات الاستوائية القاسية ببنما، ويُجري صورًا فائقة الدقة ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نُطوّر نسخة جديدة قابلة للتصنيع لنشارك هذه الأداة المهمة في جميع أنحاء العالم. سنناقش تطوير هذا الجهاز في غابات بنما، وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يُصمم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل شبكة كرتون نتورك، IDEO، والSmithsonian، ودرّس كأستاذ مُعيّن في جامعة سنغافورة الوطنية، وتم حتى تحويل بحثه إلى سلسلة تلفزيونية (مضحكة) بعنوان "Hacking the Wild"، تم توزيعها عبر شبكات Discovery. حاليًا، يُكرّس معظم وقته للعمل التطوعي مع منظمات صغيرة، ومؤخرًا أسس ورشة عمل مختبرات Digital Naturalism Laboratories. في غابة مطيرة في جامبوا ببنما، تدمج Dinalab بين العمل الميداني البيولوجي والابتكار التكنولوجي مع مجتمع من العلماء والفنانين والمهندسين ومتخصصي إعادة تأهيل الحيوانات المحليين والدوليين. وهو يُقدم حاليًا الاستشارات للطلاب بصفته أستاذًا مرتبطًا في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من أسلوب جديد لمعالجة المهام، مستفيدة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أبحاثًا حديثة حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب أو من خلال التعديل الدقيق (fine-tuning). على وجه التحديد، سأناقش عملًا مشتركًا حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مُصممًا لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلامات البصرية في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب خاص بكل مهمة، ومعالجة مقاطع الفيديو الطويلة بكفاءة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج بصرية مُدرّبة مسبقًا. سأناقش أيضًا عملًا مشتركًا حول تمكين نماذج لغة ضخمة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الاستعلامات التي تتطلب فهمًا شاملاً مكانياً-زمنياً: فنماذج MLLM تجد صعوبة في الإجابة على استعلامات تشير إلى 1) البيئة بأكملها التي يمكن لوكيل مزود بنموذج MLLM العمل فيها؛ وتُشير في نفس الوقت إلى 2) أفعال حديثة حدثت للتو وتم ترميزها في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكاني-الزماني مهم للوكلاء العاملين في العالم الحقيقي. يشمل حلنا تطوير خط أنابيب مخصص لجمع البيانات، وتعديل نموذج MLLM مزود بمشعّات (projectors) لتحسين فهم البيئة من حيث الفضاء، وفهم الملاحظات الحديثة من حيث الزمن. *عن المتحدث* [أليكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شامبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ورؤية الحاسوب. حصل على بكالوريوس ودبلوم في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونخ عامي 2006 و2008 على التوالي، ونال درجة الدكتوراه في علوم الحاسوب من معهد إيث زيورخ عام 2014. بعد ذلك، انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى عام 2016. تتمحور اهتماماته البحثية حول الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ورؤية الحاسوب، حيث شارك في تأليف العديد من الأوراق البحثية في مواضيع فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. حصلت أطروحته للدكتوراه على ميدالية ETH، وفاز بحث فريقه بجائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ تغييرًا في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لصنع فرق؟ يُظهر هذا الحديث كيف يُحدد كشف الشذوذ ويُحلل مشكلات المحاصيل باستخدام صحة أوراق القهوة كمثال رئيسي. سنبدأ بالنظرية الأساسية، ثم ندرس كيف تكتشف هذه النماذج صدأ الورقة وأضرار المنشار في صور الأوراق. تشمل الجلسة سير عمل عمليًا شاملاً باستخدام مجموعة أدوات الرؤية الحاسوبية مفتوحة المصدر FiftyOne، وتشمل تنسيق مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وتصور النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية، بالإضافة إلى خبرة عملية في تطبيق هذه التقنيات على التحديات الزراعية ومجالات أخرى. *عن المتحدث* [باولا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية والتعلم الآلي، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وهي تُطوّر تقنيات هندسية متكاملة جديدة، بشكل رئيسي في مجالات الرؤية الحاسوبية، والروبوتات، والتعلم الآلي المطبّق على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.