انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى متحدثين خبراء حول أحدث التطورات في مجال التقاء الذكاء الاصطناعي البصري بالزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **الموقع** افتراضي. [سجّل الدخول إلى Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع من أجل إدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج إدراك قوية للروبوتات والاستقلالية وجود مجموعات بيانات ضخمة ومتنوعة ثلاثية الأبعاد. ولكن جمع وترميز سحب ليدار من العالم الحقيقي بحجم كبير أمر مكلف وطويل جدًا، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم مشروع Paved2Paradise بديلاً اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع يُنتج مجموعات بيانات واقعية ومكتملة الترميز بجهد بشري ضئيل في التسمية. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح للخلفيات (مثل الحقول، الطرق، مواقع البناء) ومسح للأشياء (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise توليد عدد هائل من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار واسع النطاق للخلفيات، (2) تسجيل مسح عالي الدقة للأشياء المستهدفة في ظروف مضبوطة، (3) إدراج الأشياء داخل الخلفيات مع وضع وحجب يتماشى مع القوانين الفيزيائية، (4) محاكاة هندسة الليدار لضمان الواقعية. تُظهر التجارب أن النماذج المدربة على بيانات تم توليدها باستخدام Paved2Paradise تنتقل بفعالية إلى العالم الحقيقي، وتحقق أداءً قويًا في الكشف مع حاجة أقل بكثير للتسمية اليدوية مقارنةً بجمع مجموعة البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل مرنة أيضًا—مما يسمح للممارسين بسهولة التوسع إلى فئات أو مجالات كائنات جديدة من خلال استبدال مسح الخلفيات أو الكائنات بمسوحات جديدة. بالنسبة للممارسين في تعلم الآلة العاملين في مجالات الروبوتات أو المركبات الذاتية القيادة أو أنظمة الإدراك الحرجة للسلامة، يبرز مشروع Paved2Paradise مسارًا عمليًا نحو توسيع بيانات التدريب دون توسيع التكاليف. كما يسد الفجوة بين الأداء في المحاكاة والأداء في العالم الحقيقي، مما يتيح التكرار الأسرع والنشر الأكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألْكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس متقدم في تعلم الآلة في شركة جون دير، حيث يطور نماذج تعلّم عميق للإدراك باستخدام بيانات الليدار والصور الملونة (RGB) في أنظمة حرجة للسلامة وتعمل في الزمن الحقيقي. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية، ويحمل أيضًا تخصصًا فرعيًا في الرياضيات. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind، جوجل، ميتا، مايكروسوفت، وOpenAI، من بين آخرين، كما فاز ورقة بحثه \(batter\|pitcher\)2vec بجائزة في مؤتمر MIT Sloan للتحليلات الرياضية لعام 2018. كما ساهم برمجيًا في scikit\-learn وApache Solr، وحظيت مستودراته على GitHub، التي تلقت مجتمعة أكثر من 2\,100 نجمة، بأن تكون نقطة انطلاق لأبحاث وشفرات إنتاجية في العديد من المؤسسات المختلفة. **MothBox: جهاز رصد حشرات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية جديدة ومثيرة ومفتوحة المصدر تُعرف باسم Mothbox. يُعد Mothbox مشروعًا فائزًا بجائزة لمراقبة واسعة النطاق للحشرات بهدف قياس التنوع البيولوجي. إنه جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، ويقوم بالتقاط صور عالية الدقة جدًا لتحديد مستويات التنوع البيولوجي تلقائيًا في الغابات والزراعة. وبعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير نسخة جديدة قابلة للتصنيع لنشر هذه الأداة المهمة في جميع أنحاء العالم. وسنناقش تطور هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل Cartoon Network وIDEO وSmithsonian، ودرّس كأستاذ أكاديمي في جامعة سنغافورة الوطنية، وتحولت أبحاثه إلى سلسلة تلفزيونية (طرفة) بعنوان "Hacking the Wild"، تم توزيعها عبر شبكة Discovery Networks. حاليًا، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وشارك مؤخرًا في تأسيس مختبر الحرف الرقمية (Digital Naturalism Laboratories)، وهو مساحة إبداعية مرتبطة بمحطة ميدانية. في غابة جامبوا المطيرة في بنما، يدمج Dinalab العمل الميداني البيولوجي مع الصناعة التكنولوجية ضمن مجتمع من العلماء والفنانين والمهندسين ومُعالجي الحيوانات المحليين والدوليين. وحاليًا، يُقدم الاستشارات للطلاب كأستاذ مشارك في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من طريقة جديدة لمعالجة المهام، مستفيدة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أبحاثًا حديثة حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب (zero-shot) أو عبر التعديل الدقيق (fine-tuning). على وجه التحديد، سأتناول عملًا مشتركًا حول مشروع RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مخصصًا، صُمم لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلامات البصرية في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب مخصص للمهمة والتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج بصرية مُدرّبة مسبقًا. كما سأناقش عملًا مشتركًا حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الطلبات التي تتطلب فهمًا شاملاً للمكان والزمن: إذ تواجه النماذج متعددة الوسائط صعوبة في الإجابة على طلبات تشير إلى 1) بيئة كاملة يمكن لوكيل مزود بنموذج MLLM العمل فيها، وتشير في الوقت نفسه إلى 2) إجراءات حديثة حدثت للتو ومُرمّزة في مقطع فيديو. لكن مثل هذا الفهم الشامل للمكان والزمن مهم للوكلاء العاملين في العالم الحقيقي. ويتضمن حلنا تطوير خط أنابيب مخصص لجمع البيانات وتعديل نموذج MLLM مزود بمشعّات (projectors) لتحسين الفهم المكاني للبيئة والفهم الزمني للملاحظات الحديثة. *عن المتحدث* [أليكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شامبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. حصل على درجة البكالوريوس والدبلوم في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونيخ عامي 2006 و2008 على التوالي، ونال درجة الدكتوراه في علوم الحاسوب من ETH زيورخ في عام 2014. وبعد ذلك انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى عام 2016. تتركز اهتماماته البحثية في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية حول فهم السيناريوهات، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. ونالت أطروحته للدكتوراه ميدالية ETH، وحاز بحث فريقه على جائزة NSF CAREER. **ما وراء المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ تحولًا في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات في وقت مبكر بما يكفي لصنع فرق؟ يُظهر هذا الحديث كيف يحدد كشف الشذوذ مشكلات المحاصيل ويحلل مواقعها باستخدام صحة أوراق القهوة كمثال رئيسي. سنبدأ بالنظرية الأساسية، ثم ندرس كيف تكتشف هذه النماذج صدأ الورقة وأضرار المنشار في صور الأوراق. تشمل الجلسة سير عمل شاملاً عمليًا باستخدام أداة FiftyOne مفتوحة المصدر للرؤية الحاسوبية، تغطي تنقيح مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وتصور النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية، بالإضافة إلى خبرة عملية في تطبيق هذه التقنيات على التحديات الزراعية وDomains أخرى. *عن المتحدث* [باولا راموس](https://www.linkedin.com/in/paula-ramos-phd/) حاصلة على درجة الدكتوراه في الرؤية الحاسوبية وتعلم الآلة، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وهي تطور تقنيات هندسية متكاملة جديدة، خاصة في مجالات الرؤية الحاسوبية، والروبوتات، وتعلم الآلة المطبقة على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.