تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)63751294039297110
مجاني
المفضلة
مشاركة

15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)

addressF5HW+FGX, Vaiaku, Tuvalu

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى خبراء حول أحدث التطورات في مجال التقاء الذكاء الاصطناعي البصري بالزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا (التوقيت الباسيفيكي) **المكان** افتراضي. [سجّل الدخول إلى Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع من أجل الإدراك في العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج إدراك قوية للروبوتات والأنظمة المستقلة مجموعات بيانات ضخمة ومتنوعة ثلاثية الأبعاد. ولكن جمع وترميز سحب ليدار ثلاثية الأبعاد من العالم الحقيقي بكميات كبيرة عملية مكلفة وجهدة، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم مشروع Paved2Paradise بديلاً اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع لإنتاج مجموعات بيانات واقعية ومكتملة الترميز مع أقل جهد بشري ممكن في التسمية. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح خلفيات (مثل الحقول، الطرق، مواقع البناء) ومسح كائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise إنشاء مجموعة كبيرة جدًا ومتنوعة من مشاهد التدريب. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار خلفي واسع النطاق، (2) تسجيل مسح عالي الدقة لكائنات الهدف في ظروف مضبوطة، (3) إدخال الكائنات في الخلفيات مع وضع وحجب متسقين من الناحية الفيزيائية، (4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها بواسطة Paved2Paradise تنتقل بفعالية إلى العالم الحقيقي، وتحقق أداءً قويًا في الكشف مع تقليل كبير في الترميز اليدوي مقارنةً بطرق جمع مجموعات البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل مرنة أيضًا — مما يسمح للممارسين بسهولة التوسع إلى فئات كائنات جديدة أو مجالات جديدة من خلال استبدال مسحات الخلفية أو الكائنات. بالنسبة لممارسي تعلم الآلة العاملين في مجالات الروبوتات، المركبات المستقلة، أو أنظمة الإدراك الحرجة للسلامة، يُبرز Paved2Paradise مسارًا عمليًا نحو توسيع بيانات التدريب دون زيادة التكاليف. وهو يُقلّص الفجوة بين أداء المحاكاة وأداء العالم الحقيقي، مما يتيح تكرارًا أسرع ونشرًا أكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس تعلم آلة أول في شركة جون دير، حيث يطور نماذج تعلم عميق للإدراك باستخدام بيانات الليدار والصورة الحمراء-الخضراء-الزرقاء (RGB) في أنظمة حرجة للسلامة وتعمل في الزمن الحقيقي. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية، وله أيضًا تخصص فرعي دراسي في الرياضيات. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind، Google، Meta، Microsoft، وOpenAI، من بين آخرين، كما حصل ورقة \(batter\|pitcher\)2vec الخاصة به على جائزة في مؤتمر MIT Sloan لتحليلات رياضة 2018. كما ساهم برمجيًا في scikit\-learn وApache Solr، وحظيت مستودرات GitHub الخاصة به — التي تلقت مجتمعة أكثر من 2\,100 نجمة — بأن تكون نقطة انطلاق لأبحاث وشفرات إنتاجية في العديد من المؤسسات المختلفة. **MothBox: جهاز رصد حشرات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كويتماير عن تصميم أداة علمية جديدة ومثيرة مفتوحة المصدر، Mothbox. إن Mothbox هو مشروع فائز بجائزة لمراقبة الحشرات على نطاق واسع من أجل التنوع البيولوجي. إنه جهاز منخفض التكلفة تم تطويره في الغابات الاستوائية القاسية في بنما، ويقوم بتصوير صور عالية الدقة جدًا لتحديد تلقائي لمستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات الحشرية ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير إصدار جديد قابل للتصنيع لنشر هذه الأداة المهمة عالميًا. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يُصمم الدكتور آندي كويتماير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل شبكة كرتون نتورك، IDEO، ومعهد سميثسونيان، ودرّس كبروفيسور بدرجة تأمين وظيفي في الجامعة الوطنية السنغافورية، وتم تحويل بحثه حتى إلى سلسلة تلفزيونية (مضحكة) بعنوان "اختراق البرية"، تم توزيعها عبر شبكة ديسكفري. حاليًا، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، ومؤخرًا أسس ورشة تصنيع في محطة ميدانية تُدعى Digital Naturalism Laboratories. في غابة مطيرة في جامبوا ببنما، تدمج Dinalab العمل الميداني البيولوجي مع الحرف التكنولوجية ضمن مجتمع من العلماء والفنانين والمهندسين ومتخصصي إعادة تأهيل الحيوانات المحليين والدوليين. وحاليًا، يُقدّم الاستشارات للطلاب بصفته أستاذًا مرتبطًا في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من طريقة جديدة لمعالجة المهام، مستفيدة من القدرات الناشئة بطريقة خالية من التدريب (zero-shot). في هذا الحديث، سأناقش أبحاثًا حديثة حول تمكين الذكاء الاصطناعي البصري بطريقة خالية من التدريب أو عبر عملية ضبط دقيق (fine-tuning). على وجه التحديد، سأناقش عملًا مشتركًا حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء المهمة الصعبة لتحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب مخصص للمهمة ومعالجة مقاطع الفيديو الطويلة بكفاءة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج بصرية مُدرّبة مسبقًا. كما سأناقش عملًا مشتركًا حول تمكين نماذج لغة ضخمة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الاستعلامات التي تتطلب فهمًا شاملاً من حيث المكان والزمان: فنماذج MLLM تواجه صعوبة في الإجابة على استعلامات تشير إلى 1) البيئة بأكملها التي يمكن لوكيل مزود بنموذج MLLM العمل فيها؛ وتشير في نفس الوقت إلى 2) أفعال حديثة حدثت للتو ومُرمّزة في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل من حيث المكان والزمان مهم للوكلاء العاملين في العالم الحقيقي. ويتضمن حلنا تطوير خط أنابيب مخصص لجمع البيانات وضبط دقيق لنموذج MLLM مزوّد بمشعّات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الحديثة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شامبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. حصل على بكالوريوس ودبلومه في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ في 2014. وبعد ذلك انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى عام 2016. تتركز اهتماماته البحثية في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق العلمية حول فهم السيناريو، وخوارزميات الاستنتاج والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. حصلت أطروحته للدكتوراه على ميدالية ETH، وحاز بحث فريقه على جائزة NSF CAREER. **ما وراء المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ تحولًا في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات في وقت مبكر بما يكفي لصنع فرق؟ يُظهر هذا الحديث كيف يُحدد كشف الشذوذ مشكلات المحاصيل ويحللها، مستخدمًا صحة أوراق القهوة كمثال رئيسي. سنبدأ بالنظرية الأساسية، ثم نفحص كيف تكتشف هذه النماذج الصدأ وأضرار المنّاق في صور الأوراق. تشمل الجلسة سير عمل شاملة وعملية باستخدام مجموعة أدوات الرؤية الحاسوبية مفتوحة المصدر FiftyOne، وتغطي تنقية مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية، بالإضافة إلى خبرة عملية في تطبيق هذه التقنيات على التحديات الزراعية ومجالات أخرى. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية وتعلم الآلة، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وهي تطور تقنيات هندسية متكاملة جديدة، خاصة في مجالات الرؤية الحاسوبية، والروبوتات، وتعلم الآلة المطبقة على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.

المصدر:  meetup عرض المنشور الأصلي

موقع
F5HW+FGX, Vaiaku, Tuvalu
عرض الخريطة

meetup
كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.