انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى محاضرات من خبراء حول أحدث التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الباسيفيكي **المكان** افتراضي. [سجّل الدخول إلى Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية بيانات ضخمة ومتنوعة ثلاثية الأبعاد. ولكن جمع وتوسيم سحب نقاط الليدار من العالم الحقيقي بحجم كبير أمر مكلف وطويل جدًا، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم Paved2Paradise بديلاً اقتصاديًا: خط أنابيب محاكاة ليدار قابل للتوسيع لإنشاء مجموعات بيانات واقعية ومكتملة التوسيم مع أقل جهد بشري في التسمية. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح خلفيات (مثل الحقول، الطرق، مواقع البناء) ومسح كائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. وبدمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise توليد عدد كبير جدًا من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار واسع للخلفيات، (2) تسجيل مسح عالي الدقة لكائنات الهدف في ظروف خاضعة للتحكم، (3) إدخال الكائنات في الخلفيات مع وضع وحجب متسق فيزيائيًا، (4) محاكاة هندسة الليدار لضمان الواقعية. تُظهر التجارب أن النماذج المدربة على بيانات تم إنشاؤها بواسطة Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتحقق أداءً قويًا في الكشف مع تقليل كبير في التوسيم اليدوي مقارنةً بجمع مجموعة البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل أيضًا مرنة — تتيح للممارسين توسيعها بسهولة إلى فئات أو مجالات كائنات جديدة عن طريق استبدال مسحات الخلفية أو الكائنات. بالنسبة لممارسي تعلم الآلات العاملين في مجالات الروبوتات، المركبات المستقلة، أو إدراك الأنظمة الحرجة للسلامة، يُبرز Paved2Paradise مسارًا عمليًا نحو توسيع بيانات التدريب دون توسيع التكاليف. كما يُغلق الفجوة بين الأداء في المحاكاة والأداء في العالم الحقيقي، ما يتيح تكرارًا أسرع ونشرًا أكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس تعلم آلي أول في شركة جون دير، حيث يطور نماذج التعلم العميق للإدراك باستخدام الليدار والصورة الملونة (RGB) في أنظمة حرجة للسلامة وتعمل في الزمن الحقيقي. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة الزمكانية، ويحمل أيضًا تخصصًا فرعيًا في الرياضيات. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind، جوجل، ميتا، مايكروسوفت، وOpenAI، من بين آخرين، وكانت ورقة \(batter\|pitcher\)2vec الخاصة به فائزة بجائزة في مؤتمر MIT Sloan Sports Analytics Conference 2018. كما ساهم برمجيًا في scikit\-learn وApache Solr، وحظيت مستودرات GitHub الخاصة به — التي حصلت مجتمعة على أكثر من 2\,100 نجمة — بأن تكون نقطة انطلاق لأبحاث ورموز إنتاجية في العديد من المؤسسات المختلفة. **MothBox: جهاز رصد حشرات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية جديدة ومثيرة مفتوحة المصدر، وهي Mothbox. يعد مشروع Mothbox فائزًا بجائزة لرصد الحشرات على نطاق واسع من أجل التنوع البيولوجي. وهو جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، ويُجري صورًا عالية الدقة جدًا لتحديد مستويات التنوع البيولوجي في الغابات والزراعة تلقائيًا. بعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نطور نسخة جديدة قابلة للتصنيع لنشارك هذه الأداة المهمة في جميع أنحاء العالم. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل شبكة كرتون نتورك، IDEO، ومعهد سميثسونيان، ودرّس كبروفيسور في مسار الترقي الوظيفي في الجامعة الوطنية السنغافورية، بل وتم تحويل بحثه إلى سلسلة تلفزيونية (مضحكة) بعنوان "Hacking the Wild"، تم توزيعها عبر شبكة ديسكفري. حاليًا، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، ومؤخرًا أسس ورشة تصنيع مختبرات Digital Naturalism Laboratories. في غابة الأمطار في جامبوا ببنما، تدمج Dinalab العمل الميداني البيولوجي مع صناعة التكنولوجيا ضمن مجتمع من العلماء والفنانين والمهندسين ومحسني الحيوانات المحليين والدوليين. وحاليًا، يُقدم الاستشارات للطلاب كبروفيسور متعاون في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من أسلوب جديد لمعالجة المهام، مستفيدة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذه المحاضرة، سأناقش أحدث الأبحاث المتعلقة بتمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب ومن خلال الضبط الدقيق (fine-tuning). على وجه التحديد، سأناقش عملًا مشتركًا حول RELOCATE، وهو خط أساس بسيط لا يتطلب تدريبًا مصممًا لأداء المهمة الصعبة المتمثلة في تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب مخصص للمهمة والتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج الرؤية المدربة مسبقًا. كما سأناقش عملًا مشتركًا حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الأوامر التي تتطلب فهمًا شاملاً مكانيًا-زمانيًا: تواجه النماذج الكبيرة متعددة الوسائط صعوبة في الإجابة على أوامر تشير إلى 1) البيئة بأكملها التي يمكن لوكيل مزود بنموذج MLLM العمل فيها؛ وتشير في الوقت نفسه أيضًا إلى 2) الإجراءات الحديثة التي حدثت للتو ومُرمّزة في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكاني-الزماني مهم للوكلاء العاملين في العالم الحقيقي. يشمل حلنا تطوير خط أنابيب مخصص لجمع البيانات وضبط نموذج MLLM مزود بمشعّات لتحسين الفهم المكاني للبيئة والفهم الزمني للملاحظات الحديثة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شامبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. حصل على درجة البكالوريوس والدبلوم في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونخ عام 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ في عام 2014. بعد ذلك انضم إلى جامعة تورونتو كزميل باحث ما بعد الدكتوراه حتى عام 2016. تتمحور اهتماماته البحثية حول الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية حول موضوعات في فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. حصلت أطروحته للدكتوراه على ميدالية ETH، وحاز بحث فريقه على جائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ تحولًا في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لصنع فرق؟ تُظهر هذه المحاضرة كيف يحدد كشف الشذوذ ويُحلل مشكلات المحاصيل باستخدام صحة أوراق القهوة كمثالنا الرئيسي. سنبدأ بالنظرية الأساسية، ثم نُحلل كيف تكتشف هذه النماذج الصدأ وأضرار المنقّب في صور الأوراق. تتضمن الجلسة سير عمل عمليًا شاملاً باستخدام أداة FiftyOne مفتوحة المصدر للرؤية الحاسوبية، تغطي تجميع مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية، بالإضافة إلى خبرة عملية في تطبيق هذه التقنيات على التحديات الزراعية وقطاعات أخرى. *عن المتحدث* [باولا راموس](https://www.linkedin.com/in/paula-ramos-phd/) حاصلة على درجة الدكتوراه في الرؤية الحاسوبية وتعلم الآلة، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وقد كانت تطور تقنيات هندسية متكاملة جديدة، خصوصًا في مجالات الرؤية الحاسوبية، والروبوتات، وتعلم الآلة المطبقة على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.