انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى محاضرات من خبراء حول أحدث التطورات في مجال التقاء الذكاء الاصطناعي البصري بالزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **المكان** افتراضي. [سجّل الدخول إلى Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الواقعي** غالبًا ما يتطلب تدريب نماذج إدراك قوية للروبوتات والأنظمة المستقلة مجموعات بيانات ضخمة ومتنوعة ثلاثية الأبعاد. لكن جمع وترميز سحب ليدار من العالم الواقعي بحجم كبير أمر مكلف وطويل جدًا، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم مشروع Paved2Paradise بديلًا اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع لإنشاء مجموعات بيانات واقعية ومكتملة الترميز بجهد بشري ضئيل في التسمية. الفكرة الأساسية هي "تحليل العالم الواقعي" من خلال التقاط مسح خلفي (مثل الحقول، الطرق، مواقع البناء) ومسح كائنات منفصلة (مثل المركبات، الأشخاص، الآلات). من خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise توليد عدد كبير جدًا من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار خلفي واسع النطاق، (2) تسجيل مسح عالي الدقة لكائنات الهدف في ظروف خاضعة للتحكم، (3) إدخال الكائنات إلى الخلفيات مع وضع وحجب يتماشيان مع القوانين الفيزيائية، و(4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها باستخدام Paved2Paradise تنتقل بفعالية إلى العالم الواقعي، وتحقق أداءً قويًا في الكشف مع حاجة أقل بكثير إلى الترميز اليدوي مقارنةً بطرق جمع البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل مرنة أيضًا — مما يسمح للممارسين بسهولة التوسع إلى فئات كائنات جديدة أو مجالات جديدة عن طريق استبدال مسح الخلفية أو الكائنات بمسوحات جديدة. بالنسبة لممارسي التعلم الآلي العاملين في مجالات الروبوتات، المركبات الذاتية القيادة، أو أنظمة الإدراك الحرجة للسلامة، يبرز Paved2Paradise مسارًا عمليًا نحو توسيع بيانات التدريب دون توسيع التكاليف. وهو يسد الفجوة بين أداء المحاكاة والعالم الواقعي، مما يتيح تكرارًا أسرع ونشرًا أكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس تعلم آلي أول في شركة John Deere\، حيث يطور نماذج تعلم عميق للإدراك باستخدام الليدار والصورة الحقيقية (RGB) في أنظمة حرجة للسلامة وتعمل في الزمن الحقيقي\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، مع أطروحة حول تحسين رؤية الحاسوب والشبكات العصبية العميقة المكانية-الزمنية\، وله أيضًا تخصص فرعي في الرياضيات على مستوى الدراسات العليا\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، وفاز ورقته \(batter\|pitcher\)2vec بجائزة في مؤتمر MIT Sloan لتحليلات الرياضة 2018\. كما ساهم برمجيات تعلم آلي في scikit\-learn وApache Solr\، وحققت مستودعات GitHub الخاصة به—التي حصلت مجتمعة على أكثر من 2\,100 نجمة—نقطة بداية لأبحاث وشفرات إنتاجية في العديد من المنظمات المختلفة\. **MothBox: جهاز رصد آفات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية جديدة ومثيرة ومفتوحة المصدر، وهي Mothbox. يُعد مشروع Mothbox مشروعًا فائزًا بالجائزة لمراقبة واسعة النطاق للحشرات من حيث التنوع البيولوجي. إنها جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، ويقوم بالتقاط صور عالية الدقة جدًا ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نطور نسخة جديدة قابلة للتصنيع لنشارك هذه الأداة المهمة في جميع أنحاء العالم. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل Cartoon Network وIDEO وSmithsonian، ودرّس كبروفيسور في مسار تأمين الوظيفة في الجامعة الوطنية في سنغافورة، وتم تحويل بحثه حتى إلى سلسلة تلفزيونية (مثيرة للضحك) بعنوان "Hacking the Wild"، تم توزيعها عبر Discovery Networks. حاليًا، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس مساحة صانعي المحطة الميدانية، مختبرات Digital Naturalism. في غابة الأمطار في جامبوا ببنما، يجمع Dinalab بين العمل الميداني البيولوجي والحرف التكنولوجية مع مجتمع من العلماء والفنانين والمهندسين ومُنقذي الحيوانات المحليين والدوليين. وحاليًا، يعمل أيضًا كأستاذ متعاون مستشار للطلاب في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من طريقة جديدة لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذه المحاضرة، سأناقش أبحاثًا حديثة حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب أو من خلال التعديل الدقيق (fine-tuning). على وجه التحديد، سأناقش عملًا مشتركًا حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء المهمة الصعبة المتمثلة في تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب مخصص للمهمة والتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مشتق من نماذج رؤية مسبقة التدريب. كما سأناقش عملًا مشتركًا حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة بشكل صحيح على المطالب التي تتطلب فهمًا شاملاً مكانيًا-زمانيًا: تواجه النماذج الكبيرة متعددة الوسائط صعوبة في الإجابة على المطالب التي تشير إلى 1) البيئة بأكملها التي يمكن لوكيل مزود بنموذج MLLM العمل فيها؛ وتشير في نفس الوقت إلى 2) الإجراءات الحديثة التي حدثت للتو والمشفرة في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكاني-الزماني مهم للوكلاء الذين يعملون في العالم الحقيقي. يشمل حلنا تطوير خط أنابيب مخصص لجمع البيانات وتعديل دقيق لنموذج MLLM مزود بمشعاعات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الحديثة. *عن المتحدث* [أليكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شامبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ورؤية الحاسوب. حصل على بكالوريوس العلوم ودبلومه في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونيخ عامي 2006 و2008 على التوالي، ونال درجة الدكتوراه في علوم الحاسوب من ETH زيورخ في 2014. بعد ذلك انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى 2016. تتركز اهتماماته البحثية في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ورؤية الحاسوب، حيث شارك في تأليف العديد من الأوراق البحثية حول فهم السيناريوهات، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. حصلت أطروحته للدكتوراه على ميدالية ETH، ونالت أبحاث فريقه جائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الواقعي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ تحولًا في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات في وقت مبكر بما يكفي لصنع فرق؟ توضح هذه المحاضرة كيف يحدد كشف الشذوذ ويحلل مشكلات المحاصيل باستخدام صحة أوراق القهوة كمثالنا الأساسي. سنبدأ بالنظرية الأساسية، ثم نفحص كيف تكتشف هذه النماذج الصدأ وأضرار المن في صور الأوراق. تتضمن الجلسة سير عمل شاملاً عمليًا باستخدام مجموعة أدوات الرؤية الحاسوبية المفتوحة المصدر FiftyOne، وتشمل تنقيح مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وتصور النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية، بالإضافة إلى خبرة عملية في تطبيق هذه التقنيات على التحديات الزراعية ومجالات أخرى. *عن المتحدث* [باولا راموس](https://www.linkedin.com/in/paula-ramos-phd/) حاصلة على درجة الدكتوراه في الرؤية الحاسوبية والتعلم الآلي، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وقد كانت تطور تقنيات هندسية متكاملة جديدة، بشكل رئيسي في مجالات الرؤية الحاسوبية، والروبوتات، والتعلم الآلي المطبقة على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.