تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)63748858547201110
مجاني
المفضلة
مشاركة

15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)

addressF5HW+FGX, Vaiaku, Tuvalu

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى خبراء حول أحدث التطورات في مجال التقاء الذكاء الاصطناعي البصري بالزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **الموقع** افتراضي. [سجّل الدخول إلى Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع من أجل الإدراك في العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج إدراك قوية للروبوتات والاستقلالية مجموعات بيانات ثلاثية الأبعاد ضخمة ومتنوعة. ولكن جمع وتصنيف سحب نقاط الليدار من العالم الحقيقي بكميات كبيرة أمر مكلف ويتطلب وقتًا طويلاً، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم Paved2Paradise بديلًا اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع لإنشاء مجموعات بيانات واقعية ومكتملة التصنيف مع الحد الأدنى من الجهد البشري في التسمية. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح خلفي (مثل الحقول، الطرق، مواقع البناء) ومسح كائنات منفصلة (مثل المركبات، الأشخاص، الآلات). من خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise توليد عدد كبير من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار خلفي واسع النطاق، (2) تسجيل مسح عالي الدقة للكائنات المستهدفة في ظروف خاضعة للرقابة، (3) إدخال الكائنات في الخلفيات مع وضع وحجب يتماشى مع القوانين الفيزيائية، و(4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها بواسطة Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتُحقق أداءً قويًا في الكشف مع تقليل كبير في التسمية اليدوية مقارنةً بطرق جمع البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل مرنة أيضًا—مما يسمح للممارسين بسهولة التوسع إلى فئات كائنات جديدة أو مجالات جديدة من خلال استبدال مسحات الخلفية أو الكائنات. بالنسبة لممارسي التعلم الآلي العاملين في مجالات الروبوتات، أو المركبات ذاتية القيادة، أو الإدراك الحرج للسلامة، يُبرز Paved2Paradise طريقًا عمليًا نحو توسيع بيانات التدريب دون توسيع التكاليف. وهو يُجسّد الفجوة بين المحاكاة والأداء في العالم الحقيقي، مما يتيح التكرار الأسرع والنشر الأكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس تعلم آلي أول في شركة John Deere\، حيث يطور نماذج تعلم عميق للإدراك باستخدام الليدار والألوان (RGB) في أنظمة حرجة للسلامة وتعمل في الزمن الحقيقي\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، مع أطروحة حول تحسين رؤية الحاسوب والشبكات العصبية العميقة المكانية-الزمنية\، وله أيضًا تخصص فرعي في الرياضيات\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، كما فاز بحثه \(batter\|pitcher\)2vec بجائزة في مؤتمر MIT Sloan Sports Analytics لعام 2018\. كما ساهم برمجيًا في scikit\-learn وApache Solr\، وحققت مستودعات GitHub الخاصة به—التي تلقّت أكثر من 2\,100 نجمة بشكل جماعي—كونها نقطة انطلاق لأبحاث ورموز إنتاجية في العديد من المؤسسات المختلفة\. **MothBox: جهاز رصد حشرات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية مفتوحة المصدر جديدة ومثيرة، تُعرف بـ Mothbox. إن Mothbox هو مشروع فائز بجائزة لمراقبة واسعة النطاق للحشرات من حيث التنوع البيولوجي. إنها جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، ويُجري صورًا فائقة الدقة ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير إصدار جديد يمكن تصنيعه لنشر هذه الأداة المهمة في جميع أنحاء العالم. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل Cartoon Network، و IDEO، وSmithsonian، ودرّس كبروفيسور في مسار الترقي الوظيفي في الجامعة الوطنية السنغافورية، وحتى تم تحويل بحثه إلى سلسلة تلفزيونية (سخيفة) بعنوان "Hacking the Wild"، تم توزيعها بواسطة Discovery Networks. حاليًا، يقضي معظم وقته في العمل التطوعي مع منظمات أصغر، وقام مؤخرًا بتأسيس ورشة عمل مختبرات الطبيعة الرقمية (Digital Naturalism Laboratories). في غابة جامبوا المطيرة في بنما، تجمع Dinalab بين العمل الميداني البيولوجي والصناعة التكنولوجية مع مجتمع من العلماء والفنيين والفنانين ومتخصصي إعادة تأهيل الحيوانات المحليين والدوليين. وهو حاليًا أيضًا مستشار طلابي كبروفيسور متعاون في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من طريقة جديدة لمعالجة المهام، من خلال الاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش بحثًا حديثًا حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب (zero-shot) أو عبر التخصيص (fine-tuning). على وجه التحديد، سأناقش عملًا مشتركًا حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب خاص بالمهمة والتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج رؤية مُدرّبة مسبقًا. سأناقش أيضًا عملًا مشتركًا حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الطلبات التي تتطلب فهمًا شاملاً مكانياً-زمنياً: فنماذج MLLMs تجد صعوبة في الإجابة على الطلبات التي تشير إلى 1) البيئة بأكملها التي يمكن لوكيل مزود بنموذج MLLM العمل فيها؛ وفي الوقت نفسه تشير أيضًا إلى 2) أحدث الإجراءات التي حدثت للتو والتي تم ترميزها في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكاني-الزماني مهم للوكلاء الذين يعملون في العالم الحقيقي. يشمل حلنا تطوير خط أنابيب مخصص لجمع البيانات وتخصيص نموذج MLLM مزود بمشعّات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الحديثة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شامبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ورؤية الحاسوب. تلقّى شهادة البكالوريوس والدبلوم في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. بعد ذلك انضم إلى جامعة تورونتو كزميل باحث حتى عام 2016. تتمحور اهتماماته البحثية حول الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ورؤية الحاسوب، حيث شارك في تأليف العديد من الأوراق البحثية في مواضيع فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. حصلت أطروحته للدكتوراه على ميدالية ETH، وتم تكريم بحث فريقه بجائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية في الزراعة** يُحدث كشف الشذوذ تغييرًا في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لصنع فرق؟ يُظهر هذا الحديث كيف يُحدد كشف الشذوذ ويُحلل مشكلات المحاصيل باستخدام صحة أوراق القهوة كمثال رئيسي. سنبدأ بالنظرية الأساسية، ثم نفحص كيف تكتشف هذه النماذج صدأ الأوراق وأضرار اليرقات في الصور. تشمل الجلسة سير عمل شاملاً عمليًا باستخدام مجموعة أدوات الرؤية الحاسوبية المفتوحة المصدر FiftyOne، وتشمل إدارة مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية، وكذلك خبرة عملية في تطبيق هذه التقنيات على التحديات الزراعية ومجالات أخرى. *عن المتحدث* [باولا راموس](https://www.linkedin.com/in/paula-ramos-phd/) حاصلة على درجة الدكتوراه في الرؤية الحاسوبية والتعلم الآلي، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وهي تعمل على تطوير تقنيات هندسية متكاملة جديدة، خاصة في مجالات الرؤية الحاسوبية، والروبوتات، والتعلم الآلي المطبّق على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.

المصدر:  meetup عرض المنشور الأصلي

موقع
F5HW+FGX, Vaiaku, Tuvalu
عرض الخريطة

meetup

قد يعجبك أيضا

كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.