تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)63744620608385110
مجاني
المفضلة
مشاركة

15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)

addressF5HW+FGX, Vaiaku, Tuvalu

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى خبراء حول أحدث التطورات في مجال التقاء الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **المكان** افتراضي. [سجّل في Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع من أجل الإدراك في العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية بيانات ضخمة ومتنوعة ثلاثية الأبعاد. ولكن جمع وترميز سحب بيانات ليدار في العالم الحقيقي بحجم كبير أمر مكلف وطويل جدًا، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم Paved2Paradise بديلًا اقتصاديًا: خط أنابيب محاكاة ليدار قابل للتوسيع لإنشاء مجموعات بيانات واقعية ومُوسومة بالكامل بجهد تسمية بشري ضئيل. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح خلفي (مثل الحقول، الطرق، مواقع البناء) ومسح كائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise توليد مجموعة كبيرة تجميعيًا من مشاهد تدريب متنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار خلفي واسع النطاق، (2) تسجيل مسح عالي الدقة للكائنات المستهدفة في ظروف خاضعة للتحكم، (3) إدخال الكائنات في الخلفيات مع وضع وحجب متسقين من الناحية الفيزيائية، (4) محاكاة هندسة الليدار لضمان الواقعية. تُظهر التجارب أن النماذج المدربة على بيانات تم إنشاؤها باستخدام Paved2Paradise تنتقل بفعالية إلى العالم الحقيقي، وتحقق أداءً قويًا في الكشف مع جهد تسمية يدوي أقل بكثير مقارنةً بجمع مجموعة البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل أيضًا مرنة — تسمح للممارسين بسهولة التوسع إلى فئات كائنات أو نطاقات جديدة عن طريق استبدال مسح الخلفية أو الكائنات بمسوح جديدة. بالنسبة لممارسي التعلم الآلي العاملين في مجالات الروبوتات، المركبات الذاتية القيادة، أو أنظمة الإدراك الحرجة للسلامة، يبرز Paved2Paradise مسارًا عمليًا نحو توسيع بيانات التدريب دون توسيع التكاليف. وهو يسد الفجوة بين المحاكاة والأداء في العالم الحقيقي، مما يمكّن من التكرار الأسرع والنشر الأكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألْكرون](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس متقدم للتعلم الآلي في شركة John Deere\، حيث يطور نماذج التعلم العميق للإدراك باستخدام الليدار والصورة الملونة (RGB) في أنظمة حرجة للسلامة وتعمل في الزمن الحقيقي\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية\، وله أيضًا تخصص فرعي في الرياضيات على مستوى الدراسات العليا\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، وكانت ورقة \(batter\|pitcher\)2vec الخاصة به فائزة بجائزة في مؤتمر MIT Sloan Sports Analytics لعام 2018\. كما ساهم برمجيًا في scikit\-learn وApache Solr\، وقد تلقّت مستودعات GitHub الخاصة به—التي حصلت مجتمعة على أكثر من 2\,100 نجمة—دعمًا كنقاط بداية لأبحاث وأكواد إنتاجية في العديد من المؤسسات المختلفة\. **MothBox: جهاز مراقبة حشرات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية جديدة ومثيرة مفتوحة المصدر، Mothbox. مشروع Mothbox هو مشروع فائز بجائزة لمراقبة واسعة النطاق للحشرات من أجل التنوع البيولوجي. وهو جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، ويقوم بالتقاط صور عالية الدقة جدًا ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نُطوّر نسخة جديدة قابلة للتصنيع لنشارك هذه الأداة المهمة في جميع أنحاء العالم. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل شبكة كرتون نتورك، IDEO، ومعهد سميثسونيان، ودرّس كبروفيسور في مسار الترقي الوظيفي بجامعة سنغافورة الوطنية، وحتى تم تحويل بحثه إلى سلسلة تلفزيونية (سخيفة) بعنوان "اختراق البرية"، تم توزيعها عبر Discovery Networks. حاليًا، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس مختبر صناعة المحطة الميدانية، Digital Naturalism Laboratories. في غابة الأمطار في جامبوا ببنما، يدمج Dinalab العمل الميداني البيولوجي مع الحرف التكنولوجية ضمن مجتمع من العلماء والفنانين والمهندسين ومتخصصي إعادة تأهيل الحيوانات المحليين والدوليين. وحاليًا، يعمل أيضًا كأستاذ متعاون مستشار للطلاب في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من طريقة جديدة لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة لا تتطلب تدريبًا مخصصًا (zero-shot). في هذا الحديث، سأناقش أبحاثًا حديثة حول تمكين الذكاء الاصطناعي البصري بطريقة لا تتطلب تدريبًا مخصصًا أو عبر التخصيص الدقيق (fine-tuning). على وجه التحديد، سأناقش عملًا مشتركًا حول RELOCATE، وهو خط أساس بسيط لا يتطلب تدريبًا مصممًا لأداء المهمة الصعبة لتحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. لإزالة الحاجة إلى تدريب خاص بالمهمة والتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج بصرية مُدرّبة مسبقًا. سأناقش أيضًا عملًا مشتركًا حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) للإجابة بشكل صحيح على المطالب التي تتطلب فهمًا شاملاً للمكان والزمان: تواجه النماذج الكبيرة متعددة الوسائط صعوبة في الإجابة على المطالب التي تشير إلى 1) بيئة كاملة يمكن لوكيل مزود بنموذج MLLM العمل فيها؛ وتشير في الوقت نفسه إلى 2) أفعال حديثة حدثت للتو ومُرمّزة في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل للمكان والزمان مهم للوكلاء العاملين في العالم الحقيقي. يشمل حلنا تطوير خط أنابيب مخصص لجمع البيانات وتخصيص نموذج MLLM مزود بمشعات لتحسين الفهم المكاني للبيئة والفهم الزمني للملاحظات الحديثة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شامبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. حصل على درجة البكالوريوس والدبلوم في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من معهد إيث زيورخ عام 2014. وبعد ذلك انضم إلى جامعة تورونتو كزميل باحث حتى عام 2016. تتمحور اهتماماته البحثية حول الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية في مواضيع فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. حصلت أطروحته للدكتوراه على ميدالية ETH، وحاز بحث فريقه على جائزة NSF CAREER. **ما وراء المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ تحولًا في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات في وقت مبكر بما يكفي لصنع فرق؟ يُظهر هذا الحديث كيف يحدد كشف الشذوذ ويحلل مشكلات المحاصيل باستخدام صحة أوراق القهوة كمثال رئيسي. سنبدأ بالنظرية الأساسية، ثم ندرس كيف تكتشف هذه النماذج صدأ الأوراق وأضرار العُثّ في صور الأوراق. تشمل الجلسة سير عمل شاملاً عمليًا باستخدام مجموعة أدوات الرؤية الحاسوبية المفتوحة المصدر FiftyOne، وتغطي تنقيح مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وتصور النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية، بالإضافة إلى خبرة عملية في تطبيق هذه التقنيات على التحديات الزراعية ونطاقات أخرى. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية والتعلم الآلي، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وهي تعمل على تطوير تقنيات هندسية متكاملة جديدة، بشكل رئيسي في مجالات الرؤية الحاسوبية، والروبوتات، والتعلم الآلي المطبّق على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.

المصدر:  meetup عرض المنشور الأصلي

موقع
F5HW+FGX, Vaiaku, Tuvalu
عرض الخريطة

meetup

قد يعجبك أيضا

كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.