جميعهم يبنون وكلاء ذكاء اصطناعي - ولكن في المحور يوجد النموذج اللغوي الكبير (LLM)، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة وقائمة على البيانات؟ في هذا الجلسة، سنغوص في موضوع اختيار النماذج اللغوية الكبيرة. وسنزود بنتائج دراسة اختبرت 15 نموذجًا رائدًا في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل التفاصيل الزائدة، زمن الاستجابة، التكلفة، الدقة، وكم المعرفة المستفاد. نتوقع أن تقدم رؤى واضحة حول أداء النماذج الحالية فعليًا - بما يتجاوز الاختبارات القياسية والضجة الإعلامية - وما يعنيه ذلك بالنسبة لبناء أدوات مساعدة في البرمجة، ومساعدات المطورين، والوكلاء متعددي الوسائط.