جميعهم يبنون وكلاء ذكاء اصطناعي - ولكن في المحور يوجد النموذج اللغوي الكبير (LLM)، واختيار النموذج الصحيح أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة ومبنية على البيانات؟ في هذا الجلسة، سنغوص في موضوع اختيار النماذج اللغوية الكبيرة. وسنشارك نتائج دراسة جرى فيها اختبار 15 نموذجًا رائداً في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل التفاصيل الزائدة، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستخلصة. نتوقع أن تحصلوا على رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء الاختبارات المعيارية والضجة الإعلامية - وما يعنيه ذلك بالنسبة لبناء أدوات مساعدة للبرمجة، ومساعدين للمطورين، وأجهزة متعددة الوسائط.