جميعهم يبنون وكلاء ذكاء اصطناعي - ولكن في الجوهر يوجد النموذج اللغوي الكبير، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مستنيرة ومبنية على البيانات؟ في هذه الجلسة، سنغوص في موضوع اختيار النماذج اللغوية الكبيرة. وسنزود بنتائج دراسة اختبرت 15 نموذجًا رائدًا في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل حجم الإخراج، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستفادة. نتوقع أن تُظهر هذه الجلسة رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء المعايير المرجعية والإثارة الإعلامية - وما يعنيه ذلك بالنسبة لبناء مساعدين برمجيين، ومساعدين مطورين، ووكلاء متعددي الوسائط.