يقوم الجميع ببناء وكلاء ذكاء اصطناعي - ولكن في المحور يكمن النموذج اللغوي الكبير (LLM)، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مستنيرة ومبنية على البيانات؟ في هذا الجلسة، سنغوص في موضوع اختيار النماذج اللغوية الكبيرة. وسنشارك نتائج دراسة اختبرت 15 نموذجًا رائدة في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل الحجم الزائد، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستفادة. نتوقع تقديم رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء المعايير المرجعية والضجة الإعلامية - وما يعنيه ذلك لبناء مساعدين برمجيين، ومساعدين مطورين، ووكلاء متعددي الوسائط.