جميعهم يبنون وكلاء ذكاء اصطناعي - ولكن في المقام الأول يأتي النموذج اللغوي الكبير (LLM)، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة تعتمد على البيانات؟ في هذه الجلسة، سنغوص في موضوع اختيار النماذج اللغوية الكبيرة. وسنتشارك نتائج دراسة جرى فيها اختبار 15 نموذجًا رائدًا في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل حجم الإخراج، زمن الاستجابة، التكلفة، الدقة، وكم المعلومات المستفادة. نتوقع أن نقدم رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء الاختبارات القياسية والضجة الإعلامية - وما يعنيه ذلك بالنسبة لبناء أدوات مساعدة في البرمجة، ومساعدات المطورين، والوكلاء متعددي الوسائط.