يعمل الجميع على بناء وكلاء ذكاء اصطناعي - ولكن في المقام الأول يأتي النموذج اللغوي الكبير (LLM)، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة وقائمة على البيانات؟ في هذا الجلسة، سنغوص في موضوع اختيار النماذج اللغوية الكبيرة. سنشارك نتائج دراسة اختبرت 15 نموذجًا رائدًا في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل حجم الإخراج، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستفادة. نأمل أن تمنحكم هذه الجلسة رؤى واضحة حول أداء النماذج الحالية فعليًا - بعيدًا عن الاختبارات القياسية والضجة الإعلامية - وما يعنيه ذلك عند بناء أدوات مساعدة للبرمجة، ومساعدات المطورين، والوكلاء متعددي الوسائط.