يعمل الجميع على بناء وكلاء ذكاء اصطناعي - ولكن في جوهرها توجد النماذج اللغوية الكبيرة (LLM)، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة ومبنية على البيانات؟ في هذه الجلسة، سنغوص في موضوع اختيار النماذج اللغوية الكبيرة. وسنشارك نتائج دراسة اختبرت 15 نموذجًا رائدًا في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل التفاصيل الزائدة، زمن الاستجابة، التكلفة، الدقة، وكم المعلومات المستفادة. نتوقع تقديم رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء المعايير المرجعية والإثارة الإعلامية - وما يعنيه ذلك لبناء أدوات مساعدة في البرمجة، ومساعدات للمطورين، وأدوات وكلاء متعددة الوسائط.