تستفيد الخوارزميات الكمية من المبادئ الأساسية في ميكانيكا الكم—مثل التراكب، والتشابك، والتداخل—لإجراء الحسابات بطرق لا يمكن للخوارزميات الكلاسيكية تحقيقها. يسمح التراكب لوحدات البت الكمية (كيوبتات) بتمثيل حالات متعددة في آنٍ واحد، مما يمكن استكشاف المسارات الحسابية بشكل متوازٍ. أما التشابك فيُدخل ارتباطات بين الكيوبتات تتجاوز الحدود الكلاسيكية، ما يتيح توزيع المعلومات ومعالجتها بطريقة غير محلية. ثم يستخدم التداخل الكمي لتضخيم سعات الاحتمالات للنتائج الصحيحة مع إلغاء تلك الخاصة بالنتائج الخاطئة. على عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكسية (وحيدة)، وبسبب نظرية عدم النسخ لا يمكنها نسخ حالات كمية عشوائية. وبالتالي تتطلب تصميمات الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع البيانات المؤقتة أو تنظيم تدفقات الحساب. إن نتائج الخوارزميات الكمية احتمالية بطبيعتها، حيث تظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب تشغيلات متعددة للحصول على إجابات ذات ثقة عالية. تعتمد العديد من الخوارزميات الكمية على الدوال الصندوقية السوداء (الأوراكل) لتوجيه عمليات البحث أو اتخاذ القرار، كما في خوارزمية جروفر. ويمكن لهذه الخوارزميات أن توفر تسريعات دراماتيكية: فخوارزمية جروفر تقدم مكاسب تربيعية في مهام البحث، في حين توفر خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء وتفكك التماسك، مما يجعل التصحيح الخطي وتصميم الدوائر المتسامحة مع الأخطاء أمرًا ضروريًا. باختصار، تمثل الخوارزميات الكمية تحولًا جذريًا في مجال الحوسبة، تستفيد من الموارد الكمية الفريدة لمعالجة المشكلات التي يصعب حلها بالأجهزة الكلاسيكية.