تستفيد الخوارزميات الكمية من المبادئ الأساسية في الميكانيكا الكمية—مثل التراكب، والتشابك، والتداخل—لأداء الحسابات بطرق لا يمكن للخوارزميات الكلاسيكية تحقيقها. يسمح التراكب لوحدات البت الكمية (كيوبتات) بالتمثيل المتزامن لحالات متعددة، مما يمكن استكشاف المسارات الحسابية بشكل متوازٍ. ويؤدي التشابك إلى ظهور ارتباطات بين الكيوبتات تتجاوز الحدود الكلاسيكية، ما يسمح بتوزيع المعلومات ومعالجتها بطريقة غير محلية. ثم يستخدم التداخل الكمي لتعزيز سعات الاحتمالات للنتائج الصحيحة مع إلغاء تلك الخاصة بالنتائج الخاطئة. وعلى عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكسية (وحدة)، وبسبب نظرية عدم النسخ، لا يمكنها نسخ حالات كمية عشوائية. وبالتالي تتطلب تصميمات الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع بيانات مؤقتة أو تنظيم تدفقات الحوسبة. إن نتائج الخوارزميات الكمية احتمالية بطبيعتها، حيث تظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب تشغيلات متعددة للحصول على إجابات عالية الثقة. تعتمد العديد من الخوارزميات الكمية على الأوراكل—دوال صندوق أسود خاصة—لتوجيه عمليات البحث أو اتخاذ القرار، كما هو الحال في خوارزمية غروفير. ويمكن لهذه الخوارزميات توفير تسريعات دراماتيكية: فخوارزمية غروفير توفر مكاسب تربيعية في مهام البحث، بينما توفر خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء وتفكك التماسك، مما يجعل التصحيح الخطي وتصميم الدوائر المتسامحة مع الأخطاء أمرًا ضروريًا. باختصار، تمثل الخوارزميات الكمية تحولًا نوعيًا في الحوسبة، تستفيد من الموارد الكمية الفريدة لمعالجة المشكلات التي يصعب حلها باستخدام الآلات الكلاسيكية.