تستفيد الخوارزميات الكمية من المبادئ الأساسية للميكانيكا الكمية—مثل التراكب، والتشابك، والتداخل—لإجراء الحسابات بطرق لا يمكن للخوارزميات الكلاسيكية تحقيقها. يسمح التراكب للبتات الكمية (الكيوبتات) بتمثيل حالات متعددة في آنٍ واحد، مما يمكّن من استكشاف مسارات الحوسبة بشكل متوازٍ. أما التشابك فيُدخل ارتباطات بين الكيوبتات تتجاوز الحدود الكلاسيكية، ما يسمح بتوزيع المعلومات ومعالجتها بشكل غير محلي. ثم يستخدم التداخل الكمي لتعزيز السعات الاحتمالية للنتائج الصحيحة، مع إلغاء السعات الخاصة بالنتائج الخاطئة. على عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكسية (وحدوية)، وبسبب نظرية عدم النسخ، لا يمكنها نسخ حالات كمية عشوائية. وبالتالي، تتطلب تصميمات الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع البيانات المؤقتة أو تنظيم تدفقات الحوسبة. تتسم نتائج الخوارزميات الكمية بطابعها الاحتمالي بطبيعتها، حيث تظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب تشغيلات متعددة للحصول على إجابات عالية الثقة. تعتمد العديد من الخوارزميات الكمية على البُنى الصندوقية السوداء الخاصة تُعرف باسم الأوراكل (oracles) لتوجيه عمليات البحث أو اتخاذ القرارات، كما في خوارزمية جروفر. يمكن أن تحقق هذه الخوارزميات تسريعات دراماتيكية: فخوارزمية جروفر توفر مكاسب تربيعية في مهام البحث، في حين تمنح خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء وفقدان التماسك، مما يجعل التصحيح الخاطئ وتصميم الدوائر المتسامحة مع الأخطاء أمرًا ضروريًا. باختصار، تمثل الخوارزميات الكمية تحولًا نوعيًا في الحوسبة، حيث تستفيد من موارد كمية فريدة لمواجهة مشكلات لا يمكن حلها باستخدام الأجهزة الكلاسيكية.