تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
[in-person] لقاء أبوظبي للتعلم الآلي الموسم 6 الحلقة 163738749458690110
مجاني
المفضلة
مشاركة

[in-person] لقاء أبوظبي للتعلم الآلي الموسم 6 الحلقة 1

addressC88X+XV Abu Dhabi - United Arab Emirates

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

**🚀 لقاء أبوظبي للتعلم الآلي – انطلاقة الموسم @ مقهى كولناغو** يسعدنا استئناف **لقاء أبوظبي للتعلم الآلي** مع موسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهديريّات** – وهو مكان واسع وترحيبي، مثالي للعروض التقنية، وبناء العلاقات، والمشروبات الخفيفة. يجمع هذا الحدث الباحثين والمتخصصين وهواة **التعلم الآلي، والذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعية، ومختبرات الأبحاث المدعومة من الحكومة. سواء كنت طالبًا، أو مهندسًا، أو باحثًا، أو مجرد شخص مهتم بالذكاء الاصطناعي، فستجد شيئًا لتتعلمه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **المكان:** مقهى كولناغو، جزيرة الهديريّات، أبوظبي * **التسجيل:** مجاني (يتطلب التأكيد) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل، وبناء العلاقات * **6:30 – 8:00 مساءً** → عروض تقنية (ثلاثة متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة، وتبادل غير رسمي للاتصالات **🎤 البرنامج** ### **المحاضرة 1: الحل الذي احتل المركز الثاني في مسابقة كاجل: توقعات بيانات السوق في الوقت الفعلي من جين ستريت** **المتحدث:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة نهجًا شاملاً من البداية إلى النهاية وراء الحل الذي احتل المركز الثاني في مسابقة كاجل "Jane Street Real-Time Market Data Forecasting". تعكس مجموعة البيانات والإعداد بشكل وثيق واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط الإنتاج الكامل، وأسلط الضوء على النتائج المثيرة للاهتمام المستخلصة من تطوير النماذج في هذه الظروف. **نبذة قصيرة** باتريك يام هو باحث كمي وحائز على لقب بطل عالمي في مسابقات كاجل. يمتلك درجتي ماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) والهندسة النقلية (جامعة هونغ كونغ). يتخصص باتريك في التعلم الآلي للتنبؤات المالية، مع خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المتحدث:** مُرَاد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** دفع التعلم الآلي تقدمًا كبيرًا في إدراك القيادة الذاتية، بدءًا من كشف الكائنات وتتبعها، وصولًا إلى دمج المستشعرات والتنبؤ. ومع ذلك، فإن النماذج التي تحقق أداءً ممتازًا في الاختبارات القياسية غالبًا ما تفشل في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في إدراك القيادة الذاتية. سنتناول خط إنتاج الإدراك (المستشعرات، الكشف، التتبع، الدمج) ونسلط الضوء على التحديات مثل التحول بين المجالات، المعايرة، فجوة المحاكاة إلى الواقع، ومقايضات الدقة مقابل الأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام لإدراك القيادة الذاتية، إلى جانب رؤى عملية حول سبب كون "الـ10٪ الأخيرة" من المشكلة غالبًا هي الأصعب. **نبذة قصيرة** مُرَاد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) بجامعة خليفة. يمتلك درجة البكالوريوس في هندسة الحاسوب (2021) والماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ في القيادة الذاتية، مع خبرة عملية في دمج ليزر-كاميرا، وكشف الأجسام ثلاثية الأبعاد، وتتبع الكائنات المتعددة، والتنبؤ بالمسار. ### **المحاضرة 3: فينشين و ما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تفكر في المشكلات المالية بطريقة شفافة وقابلة للتدقيق؟ في هذه المحاضرة، سأقدم فينشين، معيارًا رمزيًا جديدًا يقيّم قدرات النمذجة اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. ويغطي فينشين 54 موضوعًا متنوعًا – من حسابات الفائدة المركبة والضرائب إلى تحليل بيانات التدفق النقدي – ليشكل بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية عالية الخطورة. من خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، يسلط الضوء على طريقة تفكير النماذج – وأين تفشل. كما سأطرح اتجاهات مستقبلية لتطوير نماذج مالية تركز على الاستدلال وتتماشى بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة قصيرة** زهوهان شي باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع الأستاذ بريسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. نُشرت أعماله في أبرز المؤتمرات في معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، ويشغل حاليًا قيادة مبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، حيث ركّز أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة.

المصدر:  meetup عرض المنشور الأصلي

موقع
C88X+XV Abu Dhabi - United Arab Emirates
عرض الخريطة

meetup

قد يعجبك أيضا

كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.