تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
[in-person] أبوظبي لقاء تعلم الآلة الموسم 6 الحلقة 163758048323074110
مجاني
المفضلة
مشاركة

[in-person] أبوظبي لقاء تعلم الآلة الموسم 6 الحلقة 1

addressC88X+XV Abu Dhabi - United Arab Emirates

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

**🚀 لقاء أبوظبي لتخصص تعلم الآلة – انطلاقة الموسم @ مقهى كولناغو** يسعدنا استئناف **لقاء أبوظبي لتخصص تعلم الآلة** مع موسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهضيريّات**، وهو مكان واسع وترحيبي مثالي للعروض التقنية، وبناء العلاقات، وتناول المشروبات المنعشة. يجمع هذا الحدث الباحثين والمتخصصين وهواة **تعلم الآلة، والذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعية، ومعامل الأبحاث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا أو مجرد شخص مهتم بالذكاء الاصطناعي، فستجد شيئًا لتعلمه وشخصًا للتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **الموقع:** مقهى كولناغو، جزيرة الهضيريّات، أبوظبي * **التسجيل:** مجانًا (يُطلب التسجيل المسبق) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل، وبناء العلاقات * **6:30 – 8:00 مساءً** → عروض تقنية (3 متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة، وتبادل غير رسمي للعلاقات **🎤 البرنامج** ### **المحاضرة 1: الحل الذي حصل على المركز الثاني في مسابقة كاجل: توقعات بيانات السوق في الوقت الفعلي من Jane Street** **المتحدث:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة نهجًا شاملاً يشرح الحل الذي حصل على المركز الثاني في مسابقة كاجل "Jane Street Real-Time Market Data Forecasting". تعكس مجموعة البيانات والإعداد بدقة واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط أنابيب العمل بالكامل، مع تسليط الضوء على النتائج المثيرة للاهتمام المستمدة من تطوير النماذج ضمن هذه الظروف. **نبذة مختصرة** باتريك يام هو باحث كمي وحاصل على لقب بطل كبار منافسات كاجل. يحمل درجتي الماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) والهندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في تعلم الآلة للتنبؤات المالية، وله خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المتحدث:** مُراد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** أدى التعلم الآلي إلى تقدم كبير في إدراك القيادة الذاتية، بدءًا من كشف الكائنات وتتبعها، وصولاً إلى دمج المستشعرات والتنبؤ. ومع ذلك، فإن النماذج التي تحقق أداءً ممتازًا في الاختبارات غالبًا ما تفشل في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنتناول خط أنابيب الإدراك (المستشعرات، الكشف، التتبع، الدمج) ونسلط الضوء على التحديات مثل التحول بين المجالات، والمعايرة، والفجوة بين المحاكاة والواقع، ومقايضات الدقة مقابل الأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام لإدراك القيادة الذاتية، إلى جانب رؤى عملية حول سبب صعوبة "الـ 10٪ الأخيرة" من المشكلة. **نبذة مختصرة** مُراد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) بجامعة خليفة. يحمل درجة البكالوريوس في هندسة الحاسوب (2021) والماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ في القيادة الذاتية، ولديه خبرة عملية في دمج ليزر الكاميرا، وكشف الأجسام ثلاثية الأبعاد، وتتبع الكائنات المتعددة، والتنبؤ بالمسارات. ### **المحاضرة 3: فينشين و ما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تستطيع استنتاج حلول للمشاكل المالية بطريقة شفافة وقابلة للتدقيق؟ في هذه المحاضرة، سأقدم فينشين، وهي معيار رمزي جديد يقيّم قدرات النمذجة اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. يغطي فينشين 54 موضوعًا متنوعًا — من حسابات الفوائد المركبة والضرائب إلى تحليل بيانات التدفق النقدي — ويُعدّ بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية الحساسة. من خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، يُلقي الضوء على طريقة تفكير النماذج — وأماكن فشلها. كما سأطرح اتجاهات مستقبلية لتطوير نماذج مالية تركز على الاستدلال وتتماشى بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة مختصرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع الأستاذ برسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. نُشرت أعماله في أبرز مؤتمرات معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، ويشغل حاليًا قيادة مبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، ركزت أطروحته فيها على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة. ## ℹ️ ما الذي يمكن توقعه * **العروض:** عروض تقنية سهلة الفهم حول أحدث المواضيع في تعلم الآلة والذكاء الاصطناعي * **المجتمع:** فرصة للقاء الأقران من الأوساط الأكاديمية، والصناعية، ووحدات البحث والتطوير الحكومية * **المشروبات:** يتم توفيرها من قبل مقهى كولناغو (شكرًا لرعاةنا) * **احضر معك:** الفضول، الأسئلة، وبطاقات العمل (إذا رغبت في بناء علاقات مهنية) ## 🎯 من يجب أن يشارك؟ * الباحثون والمهندسين في تعلم الآلة والذكاء الاصطناعي * علماء البيانات ومطوري البرمجيات * الطلاب والمهنيين في بداية مسيرتهم المهنية والمهتمين بالذكاء الاصطناعي التطبيقي * المهنيون في القطاعات الذين يستكشفون تطبيقات تعلم الآلة

المصدر:  meetup عرض المنشور الأصلي

موقع
C88X+XV Abu Dhabi - United Arab Emirates
عرض الخريطة

meetup
كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.