تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
[in-person] أبوظبي لقاء تعلم الآلة الموسم 6 الحلقة 163747891398017110
مجاني
المفضلة
مشاركة

[in-person] أبوظبي لقاء تعلم الآلة الموسم 6 الحلقة 1

addressC88X+XV Abu Dhabi - United Arab Emirates

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

**🚀 لقاء أبوظبي لتّعلم الآلة – انطلاقة الموسم @ مقهى كولناغو** نُعبّر عن حماسنا لإعادة إطلاق **لقاء أبوظبي لتّعلم الآلة** مع موسم جديد من العروض التقديمية والاجتماعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهضيريّات** — مكان واسع وودود مثالي للعروض التقنية، وبناء العلاقات، والمشروبات المنعشة. يجمع هذا الحدث الباحثين والمتخصصين وهواة **تعلم الآلة، الذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعة، ومعامل الأبحاث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا أو مجرد شخص مهتم بالذكاء الاصطناعي، فستجد شيئًا لتتعلمه وشخصًا لتتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **الموقع:** مقهى كولناغو، جزيرة الهضيريّات، أبوظبي * **التسجيل:** مجاني (مطلوب تأكيد الحضور) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل والتواصل * **6:30 – 8:00 مساءً** → عروض تقنية (3 متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة وتبادل اجتماعي غير رسمي **🎤 البرنامج** ### **العرض 1: الحل الذي حصل على المركز الثاني في مسابقة كاجل: التنبؤ ببيانات السوق في الوقت الفعلي من Jane Street** **المتحدث:** باتريك يام (باحث كمي) **الملخص** يعرض هذا العرض التقني المنهجية الشاملة وراء الحل الذي حصل على المركز الثاني في مسابقة كاجل "Jane Street Real-Time Market Data Forecasting". تعكس بيانات وظروف هذه المسابقة واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط الإنتاج بالكامل، وأسلط الضوء على النتائج المهمة المستمدة من تطوير النماذج ضمن هذه الظروف. **نبذة مختصرة** باتريك يام هو باحث كمي وحائز على لقب بطل عالمي في مسابقات كاجل. يمتلك درجتي الماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) والهندسة النقلية (جامعة هونغ كونغ). يتخصص باتريك في تعلم الآلة للتنبؤ المالي، ولديه خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، ونظم التنبؤ في الوقت الفعلي. كما حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **العرض 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المتحدث:** مُرَاد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** أدى التعلم الآلي إلى تقدّم كبير في إدراك القيادة الذاتية، بدءًا من اكتشاف الكائنات وتتبعها، وصولاً إلى دمج الحساسات والتنبؤ. ومع ذلك، فإن النماذج التي تؤدي أداءً ممتازًا في المعايير المرجعية غالبًا ما تفشل في الظروف الواقعية. يستعرض هذا العرض الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنتناول خط إنتاج الإدراك (الحساسات، الكشف، التتبع، الدمج) ونسلط الضوء على التحديات مثل تحوّل المجال، ومعايرة الأنظمة، والفجوة بين المحاكاة والواقع، فضلاً عن المفاضلة بين الدقة والأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام عالٍ لإدراك القيادة الذاتية، إلى جانب رؤى عملية حول سبب كون "الـ 10٪ الأخيرة" من المشكلة هي الأصعب غالبًا. **نبذة مختصرة** مُرَاد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) في جامعة خليفة. يحمل درجة البكالوريوس في هندسة الحاسوب (2021) والماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ في القيادة الذاتية، ولديه خبرة عملية في دمج بيانات الليدار مع الكاميرا، والكشف ثلاثي الأبعاد، وتتبع الكائنات المتعددة، وتوقع المسارات. ### **العرض 3: فينشين و ما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تستطيع التفكير في المشكلات المالية بطريقة شفافة وقابلة للتدقيق؟ في هذا العرض، سأقدم فينشين (FinChain)، وهي معيار رمزي جديد لتقييم قدرة النماذج اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. يغطي فينشين 54 موضوعًا متنوعًا — من حسابات الفوائد المركبة والضرائب إلى تحليل بيانات التدفق النقدي — ليشكّل بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية الحساسة. من خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، يُلقي الضوء على طريقة تفكير النماذج — وأماكن فشلها. سأعرض أيضًا الاتجاهات المستقبلية لتطوير نماذج مالية تركّز على الاستدلال وتوائم بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة مختصرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع الأستاذ بريسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. نُشرت أعماله في أهم المحافل في مجال معالجة اللغة الطبيعية مثل ACL و EMNLP و NAACL، ويتولى حاليًا مبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، وركّز أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة. ## ℹ️ ما الذي يمكن توقعه * **العروض:** عروض تقنية سهلة الفهم حول أحدث مواضيع تعلم الآلة والذكاء الاصطناعي * **المجتمع:** فرصة للقاء الأقران من الأوساط الأكاديمية، والصناعة، ووحدات البحث والتطوير الحكومية * **المشروبات والوجبات الخفيفة:** يوفرها مقهى كولناغو (بفضل رعاة الحدث) * **احضر معك:** الفضول، الأسئلة، وبطاقات العمل (إذا أردت التواصل) ## 🎯 من يجب أن يشارك؟ * الباحثون والمهندسين في مجال تعلم الآلة والذكاء الاصطناعي * علماء البيانات ومطوري البرمجيات * الطلاب والمهنيين في بداية مسيرتهم المهنية والمهتمين بالذكاء الاصطناعي التطبيقي * المهنيون في القطاعات المختلفة الذين يستكشفون تطبيقات تعلم الآلة

المصدر:  meetup عرض المنشور الأصلي

موقع
C88X+XV Abu Dhabi - United Arab Emirates
عرض الخريطة

meetup

قد يعجبك أيضا

كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.