**🚀 لقاء أبوظبي للتعلم الآلي – انطلاقة الموسم @ مقهى كولناجو** يسعدنا إعادة بدء **لقاء أبوظبي للتعلم الآلي** مع موسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناجو في جزيرة الهدية** — وهو مكان واسع ومرحب مثالي للعروض التقنية، وبناء العلاقات، والمشروبات. سيجمع هذا الحدث الباحثين والمتخصصين وهواة **التعلم الآلي، والذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعية، ومختبرات الأبحاث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا أو مجرد شخص مهتم بالذكاء الاصطناعي، فستجد شيئًا لتتعلمه وشخصًا لتتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **الموقع:** مقهى كولناجو، جزيرة الهدية، أبوظبي * **التسجيل:** مجانًا (مطلوب التأكيد) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل، وبناء العلاقات * **6:30 – 8:00 مساءً** → عروض تقنية (3 متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة، وعلاقات غير رسمية **🎤 البرنامج** ### **المحاضرة 1: الحل الذي احتل المركز الثاني في مسابقة كاجل: توقعات بيانات السوق في الوقت الفعلي من جين ستريت** **المتحدث:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة نهجًا شاملاً من البداية إلى النهاية وراء الحل الذي احتل المركز الثاني في مسابقة كاجل "Jane Street Real-Time Market Data Forecasting". تعكس مجموعة البيانات والإعداد بدقة واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط الإنتاج الكامل، وأسلط الضوء على النتائج المثيرة للاهتمام المستخلصة من تطوير النماذج في هذه الظروف. **نبذة مختصرة** باتريك يام هو باحث كمي وحائز على لقب بطل كبرى مسابقات كاجل. يمتلك درجتي الماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) والهندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في التعلم الآلي للتنبؤات المالية، ولديه خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وحاز على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المتحدث:** مُراد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** دفع التعلم الآلي تقدمًا كبيرًا في مجال إدراك القيادة الذاتية، بدءًا من اكتشاف الكائنات وتتبعها، وصولاً إلى دمج الحساسات والتنبؤ. ومع ذلك، غالبًا ما تفشل النماذج التي تؤدي أداءً ممتازًا في المعايير المرجعية في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في إدراك القيادة الذاتية. سنتناول خط سير الإدراك (الحساسات، الكشف، التتبع، الدمج) ونسلط الضوء على التحديات بما في ذلك تغير المجال، والمعايرة، والفجوة بين المحاكاة والواقع، ومقايضات الدقة مقابل الأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام لإدراك القيادة الذاتية، بالإضافة إلى رؤى عملية حول سبب كون "الـ 10٪ الأخيرة" من المشكلة غالبًا هي الأصعب. **نبذة مختصرة** مُراد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) بجامعة خليفة. يمتلك بكالوريوس في هندسة الحاسوب (2021) وماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ في القيادة الذاتية، ولديه خبرة عملية في دمج بيانات الليدار مع الكاميرا، وكشف الأجسام ثلاثية الأبعاد، وتتبع الكائنات المتعددة، والتنبؤ بالمسارات. ### **المحاضرة 3: فينشين و ما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تقوم بالاستدلال حول المشكلات المالية بطريقة شفافة وقابلة للتدقيق؟ في هذه المحاضرة، سأقدم فينشين (FinChain)، وهو معيار رمزي جديد يقيّم قدرات النمذجة اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. ويغطي فينشين 54 موضوعًا متنوعًا — من حسابات الفوائد المركبة والضرائب إلى تحليل بيانات التدفق النقدي — ليُعدّ بذلك بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية الحساسة. ومن خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، يُلقي الضوء على طريقة تفكير النماذج — وأين تفشل. كما سأعرض الاتجاهات المستقبلية في تطوير نماذج مالية تركّز على الاستدلال وتتماشى بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة مختصرة** زهوهان شي باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع الأستاذ بريسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. وقد تم نشر أعماله في أبرز المؤتمرات في مجال معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، ويشغل حاليًا مناصب قيادية في مبادرات جديدة تتعلق بالاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، حيث ركّز أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة. ## ℹ️ ما الذي يمكن توقعه * **العروض:** عروض تقنية سهلة الفهم حول أحدث مواضيع التعلم الآلي والذكاء الاصطناعي * **المجتمع:** فرصة للقاء الأقران من الأوساط الأكاديمية، والصناعية، ووحدات البحث والتطوير الحكومية * **المرطبات:** تُقدَّم من قبل مقهى كولناجو (بفضل رعاة الحدث) * **أحضر معك:** الفضول، الأسئلة، وبطاقات العمل (إذا رغبت في بناء علاقات) ## 🎯 من يجب أن يشارك؟ * الباحثون والمهندسان في مجال التعلم الآلي والذكاء الاصطناعي * علماء البيانات ومطوري البرمجيات * الطلاب والمهنيون المبتدئون المهتمون بالذكاء الاصطناعي التطبيقي * المهنيون في القطاعات الذين يستكشفون تطبيقات التعلم الآلي