تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
[في الموقع] لقاء أبوظبي للتعلم الآلي الموسم 6 الحلقة 163701335993857110
مجاني
المفضلة
مشاركة

[في الموقع] لقاء أبوظبي للتعلم الآلي الموسم 6 الحلقة 1

addressC88X+XV Abu Dhabi - United Arab Emirates

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

**🚀 لقاء أبوظبي للتعلم الآلي – انطلاقة الموسم @ مقهى كولناغو** يسعدنا إعادة بدء **لقاء أبوظبي للتعلم الآلي** مع موسم جديد من العروض التقديمية والاجتماعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهضيريّات**—وهو مكان واسع وترحيبي مثالي للعروض التقنية، وبناء العلاقات، والمشروبات المنعشة. سيجمع هذا الحدث الباحثين والمتخصصين وهواة **التعلم الآلي، والذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعة، ومعامل الأبحاث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا أو مجرد شخص مهتم بالذكاء الاصطناعي، فستجد شيئًا تستفيد منه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **الموقع:** مقهى كولناغو، جزيرة الهضيريّات، أبوظبي * **التسجيل:** مجانًا (يُشترط التأكيد على الحضور) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل، وبناء العلاقات * **6:30 – 8:00 مساءً** → عروض تقنية (3 متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة، وعلاقات غير رسمية **🎤 البرنامج** ### **العرض 1: الحل الذي احتل المركز الثاني في مسابقة كاجل: توقع بيانات السوق في الوقت الفعلي من Jane Street** **المتحدث:** باتريك يام (باحث كمي) **الملخص** يعرض هذا العرض التقني النهج الشامل وراء الحل الذي احتل المركز الثاني في مسابقة كاجل Jane Street للتنبؤ ببيانات السوق في الوقت الفعلي. تعكس مجموعة البيانات والإعداد بدقة واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط الإنتاج بالكامل وأسلط الضوء على النتائج المثيرة للاهتمام التي تم التوصل إليها أثناء تطوير النماذج في هذه الظروف. **نبذة مختصرة** باتريك يام هو باحث كمي وحائز على لقب بطل كبرى مسابقات كاجل. يمتلك درجتي ماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) وهندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في التعلم الآلي للتنبؤ المالي، مع خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **العرض 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المتحدث:** مُرَاد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** أدى التعلم الآلي إلى إحراز تقدم كبير في إدراك القيادة الذاتية، بدءًا من اكتشاف الكائنات وتتبعها، وصولاً إلى دمج المستشعرات والتنبؤ. ومع ذلك، فإن النماذج التي تحقق أداءً ممتازًا في الاختبارات غالبًا ما تفشل في الظروف الواقعية. يستعرض هذا العرض الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنتناول خط سير الإدراك (المستشعرات، الكشف، التتبع، الدمج) ونسلط الضوء على التحديات بما في ذلك تغير المجال، المعايرة، فجوة المحاكاة مقابل الواقع، والتوازن بين الدقة والأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام لإدراك القيادة الذاتية، إلى جانب رؤى عملية حول سبب كون "الـ 10٪ الأخيرة" من المشكلة هي الأصعب غالبًا. **نبذة مختصرة** مُرَاد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) بجامعة خليفة. يمتلك بكالوريوس في هندسة الحاسوب (2021) وماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ للقيادة الذاتية، مع خبرة عملية في دمج ليزر الكاميرا، وكشف الأجسام ثلاثية الأبعاد، وتتبع الكائنات المتعددة، وتوقع المسارات. ### **العرض 3: فينشين و ما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تستطيع التفكير في المشكلات المالية بطريقة شفافة وقابلة للتدقيق؟ في هذا العرض، سأقدم فينشين، وهي معيار رمزي جديد يقيّم قدرات النمذجة اللغوية الكبيرة على التفكير خطوة بخطوة في السيناريوهات المالية. يغطي فينشين 54 موضوعًا متنوعًا — من حسابات الفوائد المركبة والضرائب إلى تحليل قائمة التدفقات النقدية — ليوفر بيئة اختبار شاملة للتفكير الرمزي في السياقات المالية عالية الخطورة. من خلال تفكيك المهام المعقدة إلى سلاسل تفكير منظمة، يُلقي الضوء على طريقة تفكير النماذج — وأين تفشل. كما سأعرض الاتجاهات المستقبلية لتطوير نماذج مالية تركّز على التفكير وتتماشى بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة مختصرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع الأستاذ بريسلاف ناكوف. يتركز بحثه على التفكير في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. نُشرت أعماله في أبرز مؤتمرات معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، ويشغل حاليًا قيادة مبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، وركزت أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة.

المصدر:  meetup عرض المنشور الأصلي

موقع
C88X+XV Abu Dhabi - United Arab Emirates
عرض الخريطة

meetup
كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.