تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
[في الموقع] لقاء أبوظبي لتعلم الآلة الموسم 6 الحلقة 163735480627843110
مجاني
المفضلة
مشاركة

[في الموقع] لقاء أبوظبي لتعلم الآلة الموسم 6 الحلقة 1

addressC88X+XV Abu Dhabi - United Arab Emirates

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

**🚀 لقاء أبوظبي لتعلم الآلة – انطلاقة الموسم @ مقهى كولناغو** نحن متحمسون لإعادة بدء **لقاء أبوظبي لتعلم الآلة** مع موسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهضيرة**، وهو مكان واسع وترحيبي، مثالي للعروض التقنية، وبناء العلاقات، والمشروبات المنعشة. سيجمع هذا الحدث الباحثين والمتخصصين وهواة **تعلم الآلة، الذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعة، ومعامل الأبحاث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا أو مجرد شخص مهتم بالذكاء الاصطناعي، فستجد شيئًا لتتعلمه وشخصًا لتتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **الموقع:** مقهى كولناغو، جزيرة الهضيرة، أبوظبي * **التسجيل:** مجاني (يتطلب تأكيد الحضور) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل والتواصل * **6:30 – 8:00 مساءً** → عروض تقنية (3 متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة وتبادل تواصل غير رسمي **🎤 البرنامج** ### **المحاضرة 1: الحل الذي حصل على المركز الثاني في مسابقة كاجل: التنبؤ ببيانات السوق في الوقت الفعلي من جين ستريت** **المتحدث:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة منهجية شاملة من البداية إلى النهاية وراء الحل الذي حصل على المركز الثاني في مسابقة كاجل "Jane Street Real-Time Market Data Forecasting". تعكس مجموعة البيانات والإعداد الواقع الحقيقي لبناء النماذج في الأسواق المالية الحديثة. سأشارك خط أنابيب العمل بالكامل، وأسلط الضوء على النتائج المثيرة التي تم التوصل إليها أثناء تطوير النماذج في ظل هذه الظروف. **نبذة مختصرة** باتريك يام هو باحث كمي وحائز على لقب بطل عالمي في مسابقات كاجل. يمتلك درجتي الماجستير في علوم البيانات والتحليلات (جامعة كارديف، المملكة المتحدة) وهندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في تعلم الآلة للتنبؤات المالية، وله خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المتحدث:** مُرَاد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** لقد حقق تعلم الآلة تقدمًا كبيرًا في مجال إدراك القيادة الذاتية، بدءًا من اكتشاف الكائنات وتتبعها، وصولًا إلى دمج المستشعرات والتنبؤ. ومع ذلك، فإن النماذج التي تحقق أداءً ممتازًا في الاختبارات القياسية غالبًا ما تفشل في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنتناول خط أنابيب الإدراك (المستشعرات، الكشف، التتبع، الدمج) ونسلط الضوء على التحديات مثل تغير المجال، المعايرة، الفجوة بين المحاكاة والواقع، ومقايضات الدقة مقابل الأداء في الوقت الفعلي. تم تصميم هذه الجلسة لتزويد الحضور بفهم شمولي لإدراك القيادة الذاتية، بالإضافة إلى رؤى عملية حول سبب كون "الـ 10٪ الأخيرة" من المشكلة هي الأصعب غالبًا. **نبذة مختصرة** مُرَاد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) في جامعة خليفة. يمتلك درجة البكالوريوس في هندسة الحاسوب (2021) والماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ في القيادة الذاتية، ولديه خبرة عملية في دمج بيانات الليدار مع الكاميرا، وكشف الأجسام ثلاثية الأبعاد، وتتبع الكائنات المتعددة، والتنبؤ بالمسارات. ### **المحاضرة 3: فينشين وما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تفكر في المشكلات المالية بطريقة شفافة وقابلة للتدقيق؟ في هذه المحاضرة، سأقدم فينشين (FinChain)، وهي معيار رمزي جديد لتقييم قدرات النمذجة اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. ويغطي هذا المعيار 54 موضوعًا متنوعًا — من حسابات الفوائد المركبة والضرائب إلى تحليل بيانات التدفق النقدي — ليُشكل بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية الحساسة. ومن خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، يُسلط هذا المعيار الضوء على طريقة تفكير النماذج — وأماكن فشلها. كما سأحدد الاتجاهات المستقبلية لتطوير نماذج مالية تركز على الاستدلال وتوائم بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة مختصرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع الأستاذ بريسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي وفحص الحقائق. وقد نُشرت أعماله في أبرز المؤتمرات في مجال معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، ويشغل حاليًا منصب قائد لمبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، وركزت أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة.

المصدر:  meetup عرض المنشور الأصلي

موقع
C88X+XV Abu Dhabi - United Arab Emirates
عرض الخريطة

meetup
كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.