**🚀 لقاء أبوظبي للتعلم الآلي – انطلاقة الموسم @ مقهى كولناغو** يسعدنا إعادة إطلاق **لقاء أبوظبي للتعلم الآلي** مع موسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهدية** — موقع واسع وترحيبي مثالي للعروض التقنية، وبناء العلاقات، والوجبات الخفيفة. سيجمع هذا الحدث الباحثين والمتخصصين وهواة مجالات **التعلم الآلي، الذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، الصناعية، ومختبرات البحث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا، أو فقط مهتمًا بالذكاء الاصطناعي، فستجد شيئًا لتتعلمه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **المكان:** مقهى كولناغو، جزيرة الهدية، أبوظبي * **التسجيل:** مجاني (مطلوب التأكيد) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل، وتبادل العلاقات * **6:30 – 8:00 مساءً** → عروض تقنية (3 متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة، وتبادل علاقات غير رسمي **🎤 البرنامج** ### **المحاضرة 1: الحل الذي حصل على المركز الثاني في مسابقة كاجل: Jane Street للتنبؤ ببيانات السوق في الوقت الفعلي** **المتحدث:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة نهجًا شاملاً من البداية إلى النهاية وراء حلّي الذي حصل على المركز الثاني في مسابقة كاجل Jane Street للتنبؤ ببيانات السوق في الوقت الفعلي. تعكس مجموعة البيانات والإعداد بدقة واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط الإنتاج الكامل، وأسلط الضوء على النتائج المثيرة التي تم التوصل إليها أثناء تطوير النماذج ضمن هذه الظروف. **نبذة قصيرة** باتريك يام هو باحث كمي وحاصل على لقب بطل كبير في مسابقات كاجل. يحمل درجتي الماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) والهندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في التعلم الآلي للتنبؤ المالي، ويمتلك خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: تحديات إدراك القيادة الذاتية** **المتحدث:** مُرَاد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** دفع التعلم الآلي تقدمًا كبيرًا في إدراك القيادة الذاتية، بدءًا من اكتشاف الكائنات وتتبعها وحتى دمج المستشعرات والتنبؤ. ومع ذلك، فإن النماذج التي تحقق أداءً ممتازًا في الاختبارات غالبًا ما تفشل في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنتناول خط إنتاج الإدراك (المستشعرات، الكشف، التتبع، الدمج)، ونسليط الضوء على التحديات مثل تحوّل المجال، المعايرة، فجوات المحاكاة مقابل الواقع، والتوازن بين الدقة والأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام لإدراك القيادة الذاتية، بالإضافة إلى رؤى عملية حول سبب صعوبة "الـ 10٪ الأخيرة" من المشكلة. **نبذة قصيرة** مُرَاد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) في جامعة خليفة. يحمل بكالوريوس في الهندسة الحاسوبية (2021) وماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ في القيادة الذاتية، ولديه خبرة عملية في دمج بيانات الليدار مع الكاميرا، واكتشاف الكائنات ثلاثية الأبعاد، وتتبع الكائنات المتعددة، وتوقع المسارات. ### **المحاضرة 3: FinChain وما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تستطيع التفكير في المشكلات المالية بطريقة شفافة وقابلة للمراجعة؟ في هذه المحاضرة، سأقدم FinChain، وهو معيار رمزي جديد يقيّم قدرة النماذج اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. يغطي FinChain 54 موضوعًا متنوعًا — من حسابات الفوائد المركبة والضرائب إلى تحليل قائمة التدفقات النقدية — ويُعدّ بيئة شاملة لاختبار الاستدلال الرمزي في السياقات المالية عالية الخطورة. من خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، يكشف هذا المعيار عن طريقة تفكير النماذج — وأماكن فشلها. كما سأحدد الاتجاهات المستقبلية في تطوير نماذج مالية تركّز على الاستدلال، وتوائم بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة قصيرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع البروفيسور برسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. نُشرت أعماله في أهم المؤتمرات في مجال معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، ويشغل حاليًا منصب قائد لمبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، حيث ركّز أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة. ## ℹ️ ما الذي يمكن توقعه * **العروض:** عروض تقنية متقنة لكنها مفهومة حول أحدث المواضيع في ML/AI * **المجتمع:** فرصة للقاء الأقران من الأوساط الأكاديمية، الصناعية، وبحث وتطوير الحكومة * **المشروبات والوجبات الخفيفة:** يتم توفيرها من قبل مقهى كولناغو (شكرًا لرعاةنا) * **خذ معك:** الفضول، الأسئلة، وبطاقات العمل (إذا رغبت في التواصل) ## 🎯 من يجب أن يشارك؟ * الباحثون والمهندسين في مجال التعلم الآلي والذكاء الاصطناعي * علماء البيانات ومطوري البرمجيات * الطلاب والمهنيين المبتدئين المهتمين بالذكاء الاصطناعي التطبيقي * المهنيون في القطاعات المختلفة الذين يستكشفون تطبيقات التعلم الآلي