**🚀 لقاء أبوظبي للتعلم الآلي – انطلاقة الموسم @ مقهى كولناجو** يسعدنا إعادة بدء **لقاء أبوظبي للتعلم الآلي** مع موسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناجو في جزيرة الهديريّة** — وهو مكان واسع ومرحب مثالي للعروض التقنية، وبناء العلاقات، والمشروبات المنعشة. سيجمع هذا الحدث الباحثين والمتخصصين وهواة **التعلم الآلي، الذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعية، ومختبرات الأبحاث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا أو مجرد شخص مهتم بالذكاء الاصطناعي، فستجد شيئًا تستفيد منه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **المكان:** مقهى كولناجو، جزيرة الهديريّة، أبوظبي * **التسجيل:** مجاني (يتطلب تأكيد الحضور) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل والتواصل * **6:30 – 8:00 مساءً** → عروض تقنية (3 متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة وتبادل غير رسمي للاتصالات **🎤 البرنامج** ### **المحاضرة 1: الحل الذي حصل على المركز الثاني في مسابقة كاجل: التنبؤ ببيانات السوق في الوقت الفعلي من Jane Street** **المتحدث:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة نهجًا شاملاً من البداية إلى النهاية وراء الحل الذي احتل المركز الثاني في مسابقة كاجل "Jane Street Real-Time Market Data Forecasting". تعكس مجموعة البيانات والإعداد بشكل وثيق واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط الإنتاج الكامل، وأسلط الضوء على النتائج المهمة المستخلصة من تطوير النماذج ضمن هذه الظروف. **نبذة قصيرة** باتريك يام هو باحث كمي وحائز على لقب كبير الأساتذة في مسابقات كاجل. يحمل درجتي الماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) وفي هندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في التعلم الآلي للتنبؤ المالي، ويمتلك خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المتحدث:** مراد سمرتاب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** لقد حقق التعلم الآلي تقدمًا كبيرًا في مجال إدراك القيادة الذاتية، بدءًا من اكتشاف الكائنات وتتبعها وصولاً إلى دمج المستشعرات والتنبؤ. ومع ذلك، فإن النماذج التي تحقق أداءً ممتازًا في الاختبارات غالبًا ما تفشل في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنغطي خط سير الإدراك (المستشعرات، الكشف، التتبع، الدمج) ونسلط الضوء على التحديات مثل الانحراف عن المجال، المعايرة، الفجوة بين المحاكاة والواقع، والتوازن بين الدقة والأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام لإدراك القيادة الذاتية، بالإضافة إلى رؤى عملية حول سبب صعوبة "الـ 10٪ الأخيرة" من المشكلة. **نبذة قصيرة** مراد سمرتاب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) في جامعة خليفة. يحمل بكالوريوس في الهندسة الحاسوبية (2021) وماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ في مجال القيادة الذاتية، ويملك خبرة عملية في دمج بيانات الليدار مع الكاميرا، والكشف ثلاثي الأبعاد، وتتبع الكائنات المتعددة، وتنبؤ المسارات. ### **المحاضرة 3: فينشين و ما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تقوم بالاستدلال في المشكلات المالية بطريقة شفافة وقابلة للمراجعة؟ في هذه المحاضرة، سأقدم فينشين، وهي معيار رمزي جديد لتقييم قدرات النمذجة اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. ويغطي فينشين 54 موضوعًا متنوعًا — من حسابات الفوائد المركبة والضرائب إلى تحليل قائمة التدفق النقدي — ليشكل بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية عالية المخاطر. ومن خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، يُلقي الضوء على كيفية "تفكير" النماذج — وأين تفشل. كما سأحدد الاتجاهات المستقبلية لتطوير نماذج مالية تركّز على الاستدلال وتتماشى بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة قصيرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع الأستاذ برسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. وقد تم نشر أعماله في أبرز المؤتمرات في معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، ويشغل حاليًا منصب قائد لمبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، وكان أطروحته تركز على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة.