تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
[شخصيًا] لقاء أبوظبي لتعلُّم الآلة الموسم 6 الحلقة 163759653574275110
مجاني
المفضلة
مشاركة

[شخصيًا] لقاء أبوظبي لتعلُّم الآلة الموسم 6 الحلقة 1

addressC88X+XV Abu Dhabi - United Arab Emirates

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

**🚀 لقاء أبوظبي لتعلُّم الآلة – انطلاقة الموسم @ مقهى كولناغو** يسعدنا استئناف **لقاء أبوظبي لتعلُّم الآلة** مع موسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهضيريّات**—وهو مكان واسع وترحيبي، مثالي للعروض التقنية، وتمتين العلاقات، وتناول المرطبات. يجمع هذا الحدث الباحثين والمتخصصين وهواة **تعلُّم الآلة، والذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعة، ومعامل الأبحاث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا، أو مجرد شخص مهتم بالذكاء الاصطناعي، فستجد شيئًا لتعلمه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **المكان:** مقهى كولناغو، جزيرة الهضيريّات، أبوظبي * **التسجيل:** مجانًا (مطلوب التأكيد بالحضور) (بحد أقصى 50 مشاركًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل والتواصل * **6:30 – 8:00 مساءً** → عروض تقنية (3 متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة وتفاعل غير رسمي **🎤 البرنامج** ### **المحاضرة 1: الحل الذي حلّ بالمركز الثاني في مسابقة كاجل: التنبؤ ببيانات السوق في الوقت الفعلي من جين ستريت** **المتحدث:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة منهجية شاملة من البداية إلى النهاية وراء الحل الذي حلّ بالمركز الثاني في مسابقة كاجل "Jane Street Real-Time Market Data Forecasting". تعكس مجموعة البيانات والإعداد بدقة واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط الإنتاج بالكامل، وأسلط الضوء على النتائج المثيرة للاهتمام التي توصلت إليها أثناء تطوير النماذج في هذه الظروف. **نبذة مختصرة** باتريك يام هو باحث كمي وحائز على لقب كبير الأساتذة في مسابقات كاجل. يمتلك درجتي ماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) والهندسة النقلية (جامعة هونغ كونغ). يتخصص باتريك في تعلُّم الآلة للتنبؤ المالي، مع خبرة في نمذجة السلاسل الزمنية، والتعلُّم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على عدة ميداليات ذهبية وفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المتحدث:** مُرَاد سمرتياب (مهندس باحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** لقد دفع التعلُّم الآلة تقدمًا كبيرًا في مجال إدراك القيادة الذاتية، بدءًا من اكتشاف الكائنات وتتبعها، وصولًا إلى دمج الحساسات والتنبؤ. ومع ذلك، فإن النماذج التي تحقق أداءً ممتازًا في المعايير التقييمية غالبًا ما تفشل في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في إدراك القيادة الذاتية. سنتناول خط إنتاج الإدراك (الحساسات، الاكتشاف، التتبع، الدمج)، ونسلط الضوء على التحديات مثل انزياح المجال، المعايرة، فجوة المحاكاة إلى الواقع، ومقايضات الدقة مقابل الأداء في الوقت الفعلي. تم تصميم هذه الجلسة لتزويد الحضور بفهم عام على مستوى عالٍ لإدراك القيادة الذاتية، بالإضافة إلى رؤى عملية حول سبب صعوبة "الـ 10٪ الأخيرة" من المشكلة. **نبذة مختصرة** مُرَاد سمرتياب هو مهندس باحث في مختبر المركبات الذاتية (AVLab) بجامعة خليفة. يمتلك بكالوريوس في هندسة الحاسوب (2021) وماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ للقيادة الذاتية، مع خبرة عملية في دمج ليزر-كاميرا، وكشف ثلاثي الأبعاد، وتتبع الكائنات المتعددة، والتنبؤ بالمسار. ### **المحاضرة 3: فينشين و ما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تستطيع التفكير في المشكلات المالية بطريقة شفافة وقابلة للتدقيق؟ في هذه المحاضرة، سأقدم فينشين (FinChain)، وهي معيار رمزي جديد يقيّم قدرات النمذجة اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. وتشمل فينشين 54 موضوعًا متنوعًا — من حسابات الفوائد المركبة والضرائب إلى تحليل قائمة التدفقات النقدية — لتوفير بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية الحساسة. ومن خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، تُلقي فينشين الضوء على طريقة تفكير النماذج — وأماكن فشلها. كما سأعرض الاتجاهات المستقبلية لتطوير نماذج مالية تركّز على الاستدلال وتتماشى بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة مختصرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع الأستاذ بريسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. وقد نُشرت أعماله في أبرز المؤتمرات في معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، وهو حاليًا يقود مبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، وركّز أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة.

المصدر:  meetup عرض المنشور الأصلي

موقع
C88X+XV Abu Dhabi - United Arab Emirates
عرض الخريطة

meetup
كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.