**🚀 لقاء أبوظبي للتعلم الآلي – انطلاقة الموسم @ مقهى كولناغو** يسعدنا إعادة بدء **لقاء أبوظبي للتعلم الآلي** مع موسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهضيريّات** — مكان واسع وترحيبي مثالي للعروض التقنية، وبناء العلاقات، والوجبات الخفيفة. سيجمع هذا الحدث الباحثين والمتخصصين وهواة مجالات **التعلم الآلي، الذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، الصناعية، ومختبرات الأبحاث الداعمة من قبل الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا أو مجرد شخص مهتم بالذكاء الاصطناعي، فستجد شيئًا لتتعلمه وشخصًا لتتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **المكان:** مقهى كولناغو، جزيرة الهضيريّات، أبوظبي * **التسجيل:** مجاني (يتطلب تأكيد الحضور) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل، وتبادل العلاقات * **6:30 – 8:00 مساءً** → عروض تقنية (3 محاضرين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة، وتبادل علاقات غير رسمي **🎤 البرنامج** ### **المحاضرة 1: الحل الذي حصل على المركز الثاني في مسابقة كاجل: التنبؤ ببيانات السوق في الوقت الفعلي - Jane Street** **المحاضر:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة نهجًا شاملاً من البداية إلى النهاية حول الحل الذي احتل المركز الثاني في مسابقة كاجل "Jane Street Real-Time Market Data Forecasting". تعكس مجموعة البيانات والإعداد بشكل وثيق واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط الإنتاج الكامل، وأسلط الضوء على النتائج المثيرة للاهتمام التي تم التوصل إليها أثناء تطوير النماذج في ظل هذه الظروف. **نبذة قصيرة** باتريك يام هو باحث كمي وحاصل على لقب كبير في مسابقات كاجل. يحمل درجتي الماجستير في علم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) وفي هندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في التعلم الآلي للتنبؤات المالية، ويملك خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المحاضر:** مُرَاد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** لقد دفع التعلم الآلي تقدمًا كبيرًا في مجال إدراك القيادة الذاتية، بدءًا من كشف الكائنات وتتبعها وحتى دمج المستشعرات والتنبؤ. ومع ذلك، غالبًا ما تفشل النماذج التي تحقق أداءً ممتازًا في المعايير المرجعية عند تطبيقها في ظروف العالم الحقيقي. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنتناول خط سير عملية الإدراك (المستشعرات، الكشف، التتبع، الدمج)، ونسلط الضوء على التحديات مثل التحول بين المجالات، المعايرة، الفجوة بين المحاكاة والواقع، والتوازن بين الدقة والأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام على مستوى عالٍ لإدراك القيادة الذاتية، إلى جانب رؤى عملية حول سبب صعوبة "الـ 10٪ الأخيرة" من المشكلة. **نبذة قصيرة** مُرَاد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) بجامعة خليفة. يحمل بكالوريوس في هندسة الحاسوب (2021) وماجستير في علوم الحاسوب (2023)، وكلا الشهادتين من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ في القيادة الذاتية، ولديه خبرة عملية في دمج بيانات الليدار مع الكاميرا، والكشف ثلاثي الأبعاد، وتتبع الكائنات المتعددة، والتنبؤ بالمسارات. ### **المحاضرة 3: FinChain وما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المحاضر:** زهوهان شي، باحث في MBZUAI **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تستطيع التفكير في المشكلات المالية بطريقة شفافة وقابلة للمراجعة؟ في هذه المحاضرة، سأقدم FinChain، وهو معيار رمزي جديد يقيّم قدرات النماذج اللغوية الكبيرة على الاستدلال التدريجي في السيناريوهات المالية. ويغطي FinChain 54 موضوعًا متنوعًا — من حسابات الفائدة المركبة والضرائب إلى تحليل قائمة التدفق النقدي — ليوفر بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية عالية المخاطر. ومن خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، يلقي الضوء على طريقة تفكير النماذج — وأين تفشل. كما سأحدد الاتجاهات المستقبلية لتطوير نماذج مالية تركّز على الاستدلال وتتماشى بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الحقيقي. **نبذة قصيرة** زهوهان شي هو باحث ما بعد الدكتوراه في MBZUAI، يعمل مع الأستاذ بريسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. وقد نُشرت أعماله في أهم المؤتمرات في معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، ويشغل حاليًا منصبًا قياديًا في مبادرات جديدة تتعلق بالاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، وركزت أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة. ## ℹ️ ماذا تتوقع * **المحاضرات:** عروض تقنية ولكنها سهلة الفهم حول أحدث المواضيع في ML/الذكاء الاصطناعي * **المجتمع:** فرصة للقاء الأقران من الأوساط الأكاديمية، الصناعية، ووحدات البحث والتطوير الحكومية * **المشروبات والوجبات الخفيفة:** يتم توفيرها من قبل مقهى كولناغو (شكرًا لرعاةنا) * **ما يجب إحضاره:** الفضول، الأسئلة، وبطاقات العمل (إذا أردت التواصل) ## 🎯 من يجب أن يشارك؟ * الباحثون والمهندسان في مجال التعلم الآلي / الذكاء الاصطناعي * علماء البيانات ومطوري البرمجيات * الطلاب والمهنيون في بداية حياتهم المهنية المهتمون بالذكاء الاصطناعي التطبيقي * المهنيون في القطاعات الذين يستكشفون تطبيقات التعلم الآلي