**🚀 لقاء أبوظبي للتعلم الآلي – انطلاقة الموسم @ مقهى كولناغو** يسعدنا إعادة إطلاق **لقاء أبوظبي للتعلم الآلي** مع موسم جديد من العروض التقديمية والاجتماعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهديريات** — مكان واسع وترحيبي مثالي للعروض التقنية، وبناء العلاقات، والمشروبات الخفيفة. يجمع هذا الحدث الباحثين والمتخصصين وهواة **التعلم الآلي، والذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعة، ومعامل الأبحاث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا أو فقط مهتمًا بالذكاء الاصطناعي، فستجد شيئًا تستفيد منه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **المكان:** مقهى كولناغو، جزيرة الهديريات، أبوظبي * **التسجيل:** مجاني (مطلوب التأكيد على الحضور) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل والتواصل * **6:30 – 8:00 مساءً** → عروض تقنية (3 متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة وتبادل غير رسمي **🎤 البرنامج** ### **العرض 1: الحل الذي احتل المركز الثاني في مسابقة كاجل: التنبؤ ببيانات السوق في الوقت الفعلي من جين ستريت** **المتحدث:** باتريك يام (باحث كمي) **الملخص** يعرض هذا الحديث النهج الشامل وراء حصولي على المركز الثاني في مسابقة كاجل Jane Street للتنبؤ ببيانات السوق في الوقت الفعلي. تعكس مجموعة البيانات والإعداد بشكل وثيق واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط الإنتاج الكامل، وأسلط الضوء على النتائج المثيرة للاهتمام من تطوير النماذج في ظل هذه الظروف. **نبذة مختصرة** باتريك يام هو باحث كمي ومحترف كبير في مسابقات كاجل. يحمل درجتي الماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) والهندسة النقلية (جامعة هونغ كونغ). يتخصص باتريك في التعلم الآلي للتنبؤ المالي، ويمتلك خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **العرض 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المتحدث:** مُراد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** حقق التعلم الآلي تقدمًا كبيرًا في إدراك القيادة الذاتية، بدءًا من كشف الكائنات وتتبعها، وصولاً إلى دمج المستشعرات والتنبؤ. ومع ذلك، فإن النماذج التي تحقق أداءً ممتازًا في الاختبارات غالبًا ما تفشل في الظروف الواقعية. يستعرض هذا الحديث الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنتناول خط سير الإدراك (المستشعرات، الكشف، التتبع، الدمج) ونسلط الضوء على التحديات بما في ذلك تغير المجال، المعايرة، فجوة المحاكاة إلى الواقع، والتوازن بين الدقة والأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام لإدراك القيادة الذاتية، إلى جانب رؤى عملية حول سبب صعوبة “الـ 10٪ الأخيرة” من المشكلة. **نبذة مختصرة** مُراد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) بجامعة خليفة. يحمل بكالوريوس في الهندسة الحاسوبية (2021) وماجستير في علوم الحاسوب (2023)، كلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ للقيادة الذاتية، ويمتلك خبرة عملية في دمج بيانات ليزر الكاميرا، وكشف الأجسام ثلاثية الأبعاد، وتتبع الكائنات المتعددة، والتنبؤ بالمسارات. ### **العرض 3: فينشين و ما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تستطيع التفكير في المشكلات المالية بطريقة شفافة وقابلة للتدقيق؟ في هذا الحديث، سأقدم فينشين، وهي معيار رمزي جديد يقيّم قدرات النمذجة اللغوية الكبيرة على التفكير خطوة بخطوة في السيناريوهات المالية. وتشمل فينشين 54 موضوعًا متنوعًا — من حسابات الفائدة المركبة والضرائب إلى تحليل بيانات التدفق النقدي — وتُعدّ منصة شاملة لاختبار التفكير الرمزي في السياقات المالية الحساسة. من خلال تفكيك المهام المعقدة إلى سلاسل تفكير منظمة، تُظهر فينشين كيف “يفكر” النموذج — وأين يفشل. كما سأحدد الاتجاهات المستقبلية لتطوير نماذج مالية تركز على التفكير وتوائم بشكل أفضل توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة مختصرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع الأستاذ برسلاف ناكوف. يتركز بحثه على التفكير في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. نُشرت أعماله في أبرز المؤتمرات في معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، ويشغل حاليًا مناصب قيادية في مبادرات جديدة تتعلق بالاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، حيث ركزت أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة. ## ℹ️ ما الذي يمكن توقعه * **العروض:** عروض تقنية وسهلة الفهم حول أحدث المواضيع في التعلم الآلي والذكاء الاصطناعي * **المجتمع:** فرصة للقاء الزملاء من الأوساط الأكاديمية، والصناعة، وأبحاث الحكومة * **المرطبات:** يتم توفيرها من قبل مقهى كولناغو (شكرًا لرعاةنا) * **احضر معك:** الفضول، الأسئلة، وبطاقات العمل (إذا أردت التواصل) ## 🎯 من يجب أن يشارك؟ * الباحثون والمهندسين في مجال التعلم الآلي والذكاء الاصطناعي * علماء البيانات ومطوري البرمجيات * الطلاب والمهنيين المبتدئين المهتمين بالذكاء الاصطناعي التطبيقي * المهنيين في الصناعة الذين يستكشفون تطبيقات التعلم الآلي