تستفيد الخوارزميات الكمية من المبادئ الأساسية للديناميكا الكمية—مثل التراكب، والتشابك، والتداخل—لإجراء الحسابات بطرق لا يمكن للخوارزميات الكلاسيكية تحقيقها. يسمح التراكب للبتات الكمية (الكيوبتات) بتمثيل حالات متعددة في آنٍ واحد، مما يمكّن من استكشاف المسارات الحسابية بشكل متوازٍ. أما التشابك فيُدخِل ارتباطات بين الكيوبتات تتجاوز الحدود الكلاسيكية، ما يسمح بتوزيع المعلومات ومعالجتها بشكل غير محلي. ثم يستخدم التداخل الكمي لتكبير السعات الاحتمالية للنتائج الصحيحة، بينما يتم إلغاء السعات الخاصة بالنتائج الخاطئة. على عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكسية (وحدوية)، وبسبب نظرية عدم النسخ، لا يمكنها نسخ حالات كمية عشوائية. وبالتالي، تتطلب تصميمات الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع البيانات المؤقتة أو تنظيم تدفقات الحساب. تتسم نتائج الخوارزميات الكمية بطبيعتها الاحتمالية الجوهرية، حيث تظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب عدة تشغيلات للحصول على إجابات عالية الثقة. تعتمد العديد من الخوارزميات الكمية على الأوراكل—دوال صندوق أسود خاصة—لتوجيه عمليات البحث أو اتخاذ القرار، كما في خوارزمية جروفر. يمكن لهذه الخوارزميات تحقيق تسريعات دراماتيكية: فخوارزمية جروفر توفر مكاسب تربيعية في مهام البحث، في حين تقدم خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء وتفكك التماسك، ما يجعل التصحيح الخطي وتصميم الدوائر المتسامحة مع الأخطاء أمرًا ضروريًا. باختصار، تمثل الخوارزميات الكمية تحولًا نوعيًا في الحوسبة، حيث تستفيد من موارد كمية فريدة لمعالجة المشكلات التي يصعب حلها بالآلات الكلاسيكية.