انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى متحدثين خبراء حول أحدث التطورات في مجال التقاء الذكاء الاصطناعي البصري بالزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الباسيفيكي **المكان** افتراضي. [سجّل الدخول عبر زووم.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع من أجل إدراك الواقع** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والقيادة الذاتية مجموعات بيانات ضخمة ومتنوعة ثلاثية الأبعاد. لكن جمع وتصنيف سحب نقاط ليدار من العالم الحقيقي بكميات كبيرة عملية مكلفة وجهدة، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم مشروع Paved2Paradise بديلاً اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع لإنشاء مجموعات بيانات واقعية ومكتملة التصنيف بجهد تصنيف بشري ضئيل. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح خلفيات (مثل الحقول، الطرق، مواقع البناء) ومسح كائنات منفصلة (مثل المركبات، الأشخاص، الآلات). من خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise توليد عدد كبير جدًا من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار خلفي واسع النطاق، (2) تسجيل مسح عالي الدقة لكائنات الهدف في ظروف خاضعة للتحكم، (3) إدخال الكائنات في الخلفيات مع وضع وحجب يتماشيان مع القوانين الفيزيائية، (4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها عبر Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتحقق أداءً قويًا في الكشف مع تقليل كبير في الحاجة إلى التصنيف اليدوي مقارنةً بطرق جمع البيانات التقليدية. لا تقتصر هذه الطريقة على الكفاءة من حيث التكلفة، بل إنها مرنة أيضًا — تتيح للممارسين توسيع النموذج بسهولة إلى فئات كائنات أو مجالات جديدة من خلال استبدال مسح الخلفية أو الكائنات. بالنسبة لممارسي تعلم الآلة العاملين في مجالات الروبوتات، المركبات الذاتية القيادة، أو أنظمة الإدراك الحرجة للسلامة، يبرز Paved2Paradise طريقًا عمليًا لتوسيع بيانات التدريب دون زيادة التكاليف. كما يسد الفجوة بين أداء المحاكاة والعالم الحقيقي، مما يتيح تكرارًا أسرع ونشرًا أكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألْكرون](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي للتعلم الآلي في شركة جون دير، حيث يطور نماذج التعلم العميق لاستشعار الليدار والصور الملونة في أنظمة تتطلب سلامة عالية وتُعمل في الزمن الحقيقي. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن، مع أطروحة حول تحسين رؤية الحاسوب والشبكات العصبية العميقة المكانية-الزمنية، كما يمتلك تخصصًا فرعيًا في الرياضيات. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind، جوجل، ميتا، مايكروسوفت، وOpenAI، من بين آخرين، كما فاز ورقة \(batter\|pitcher\)2vec الخاصة به بجائزة في مؤتمر MIT Sloan Sports Analytics Conference 2018. كما ساهم برمجيًا في scikit\-learn وApache Solr، وحظيت مستودرات GitHub الخاصة به — التي تلقّت مجتمعة أكثر من 2\,100 نجمة — بأن تكون نقطة انطلاق لأبحاث وشفرات إنتاجية في العديد من المؤسسات المختلفة. **MothBox: جهاز رصد حشرات منخفض التكلفة، مفتوح المصدر، وآلي** سيتحدث الدكتور آندي كويتماير عن تصميم أداة علمية مفتوحة المصدر ومثيرة جديدة، وهي Mothbox. يعد Mothbox مشروعًا فائزًا بجائزة لمراقبة الحشرات على نطاق واسع من أجل التنوع البيولوجي. وهو جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، ويُجري صورًا عالية الدقة جدًا ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات ومئات عمليات النشر في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير نسخة جديدة قابلة للتصنيع لتعميم هذه الأداة المهمة على مستوى العالم. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يُصمّم الدكتور آندي كويتماير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل Cartoon Network وIDEO وSmithsonian، ودرّس كبروفيسور في مسار التعيين الدائم في الجامعة الوطنية السنغافورية، بل وتحولت أبحاثه إلى سلسلة تلفزيونية (مثيرة للسخرية) بعنوان "Hacking the Wild"، تم توزيعها عبر Discovery Networks. حاليًا، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، ومؤخرًا أسس ورشة تصنيع مختبرات Digital Naturalism Laboratories. في غابة جامبوا المطيرة في بنما، تدمج Dinalab بين العمل الميداني البيولوجي وصناعة التكنولوجيا ضمن مجتمع من العلماء والفنانين والمهندسين ومُعالجي الحيوانات المحليين والدوليين. وحاليًا، يُشرف أيضًا على طلاب كبروفيسور متعاون في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من أسلوب جديد لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة لا تتطلب تدريبًا. في هذا الحديث، سأناقش بحثًا حديثًا حول تمكين الذكاء الاصطناعي البصري بدون تدريب أو عبر التخصيص الدقيق. على وجه التحديد، سأتناول بحثًا مشتركًا حول مشروع RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة وهي تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب مخصص للمهمة والتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مشتق من نماذج رؤية مسبقة التدريب. كما سأناقش عملًا مشتركًا حول تمكين النماذج الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الأوامر التي تتطلب فهمًا شاملاً مكانيًا-زمانيًا: حيث تواجه النماذج الكبيرة متعددة الوسائط صعوبة في الإجابة على الأوامر التي تشير إلى 1) بيئة كاملة يمكن لوكيل مزود بـ MLLM العمل فيها؛ وتشير في الوقت نفسه أيضًا إلى 2) أفعال حديثة جدًا حدثت للتو وتم ترميزها في مقطع فيديو. إلا أن هذا الفهم المكاني-الزماني الشامل مهم للوكلاء العاملين في العالم الحقيقي. ويتضمن حلنا تطوير خط أنابيب مخصص لجمع البيانات وتخصيص نموذج MLLM مزود بمشعّات لتحسين كل من الفهم المكاني للبيئة والفَهم الزماني للملاحظات الحديثة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شمباين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ورؤية الحاسوب. حصل على بكالوريوس ودبلوم في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. وبعد ذلك انضم إلى جامعة تورونتو كزميل باحث ما بعد الدكتوراه حتى عام 2016. تتركز اهتماماته البحثية في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ورؤية الحاسوب، حيث شارك في تأليف العديد من الأوراق العلمية حول فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. ونالت أطروحة دكتوراه له وسام ETH، كما حصل فريقه البحثي على جائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي لرؤية الحاسوب الزراعية** يُحدث كشف الشذوذ تحولًا في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي أن يكتشف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لصنع فرق؟ يُظهر هذا الحديث كيف يُمكن لكشف الشذوذ تحديد مشكلات المحاصيل وموقعها باستخدام صحة أوراق القهوة كمثال رئيسي. سنبدأ بالنظرية الأساسية، ثم نفحص كيف تكتشف هذه النماذج الصدأ وأضرار المنّ في صور الأوراق. تشمل الجلسة سير عمل شاملاً وعمليًا باستخدام أداة FiftyOne مفتوحة المصدر لرؤية الحاسوب، وتشمل تنقيح مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وتصور النتائج. ستحصل على فهم نظري لكشف الشذوذ في رؤية الحاسوب وخبرة عملية في تطبيق هذه التقنيات على التحديات الزراعية وحقول أخرى. *عن المتحدث* [باولا راموس](https://www.linkedin.com/in/paula-ramos-phd/) حاصلة على دكتوراه في رؤية الحاسوب وتعلم الآلة، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وقد كانت تعمل على تطوير تقنيات هندسية متكاملة جديدة، خاصة في مجالات رؤية الحاسوب، والروبوتات، وتعلم الآلة المطبقة على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.