انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى متحدثين خبراء حول آخر التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **المكان** افتراضي. [سجّل الدخول عبر Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع من أجل الإدراك في العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج إدراك قوية لأنظمة الروبوتات والاستقلالية وجود مجموعات بيانات ثلاثية الأبعاد ضخمة ومتنوعة. ولكن جمع وتصنيف سحب نقاط الليدار من العالم الحقيقي بحجم كبير أمر مكلف وجهد يستغرق وقتًا طويلاً، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم مشروع Paved2Paradise بديلاً اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع لإنتاج مجموعات بيانات واقعية ومُصنفة بالكامل مع الحد الأدنى من الجهد البشري في التسمية. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح الخلفية (مثل الحقول، الطرق، مواقع البناء) ومسح الكائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise توليد عدد كبير من مشاهد التدريب المختلفة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار واسع النطاق للخلفية، (2) تسجيل مسح عالي الدقة لكائنات مستهدفة في ظروف مضبوطة، (3) إدخال الكائنات داخل الخلفيات مع وضع وحجب يتماشيان مع القوانين الفيزيائية، و(4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها باستخدام Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتحقق أداءً قويًا في الكشف مع حاجة أقل بكثير للتسمية اليدوية مقارنةً بجمع مجموعة البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل أيضًا مرنة — تتيح للممارسين توسيع نطاقهم بسهولة إلى فئات أو مجالات كائنات جديدة عن طريق استبدال مسح الخلفية أو الكائنات بآخر جديد. بالنسبة لممارسي تعلم الآلة العاملين في مجالات الروبوتات، المركبات المستقلة، أو نظم الإدراك الحرجة للسلامة، يبرز Paved2Paradise مسارًا عمليًا نحو توسيع بيانات التدريب دون زيادة التكاليف. ويُغلق الفجوة بين المحاكاة والأداء في العالم الحقيقي، مما يتيح تكرارًا أسرع ونشرًا أكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي للتعلم الآلي في شركة John Deere\، حيث يطور نماذج التعلم العميق للإدراك باستخدام بيانات الليدار والألوان (RGB) في أنظمة تتطلب السلامة وتكون في الوقت الفعلي\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، وكان موضوع أطروحته تحسين الرؤية الحاسوبية والشبكات العصبية العميقة الزمكانية\، كما يمتلك تخصصًا فرعيًا للدراسات العليا في الرياضيات\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، كما فاز بجائزة في مؤتمر MIT Sloan Sports Analytics Conference عام 2018 عن ورقة البحث الخاصة به \(batter\|pitcher\)2vec\. كما ساهم برمجيًا في scikit\-learn وApache Solr\، وقد تلقى مستودعات GitHub الخاصة به والتي بلغت معًا أكثر من 2\,100 نجمة دعمًا كبيرًا لتكون نقطة انطلاق لأبحاث وأكواد إنتاجية في العديد من المؤسسات المختلفة\. **MothBox: جهاز مراقبة حشرات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كوتميير عن تصميم أداة علمية مفتوحة المصدر جديدة ومثيرة، تُعرف باسم Mothbox. إن Mothbox هو مشروع فائز بجائزة لمراقبة واسعة النطاق للحشرات من أجل التنوع البيولوجي. إنه جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، يقوم بالتقاط صور فائقة الدقة ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير نسخة جديدة قابلة للإنتاج الصناعي لنشارك هذه الأداة المهمة في جميع أنحاء العالم. سنناقش تطور هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كوتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل شبكة الكرتون، IDEO، ومعهد سميثسونيان، ودرّس كأستاذ محاضر في جامعة سنغافورة الوطنية، وحتى تم تحويل أبحاثه إلى سلسلة تلفزيونية (مضحكة) بعنوان "Hacking the Wild"، تم توزيعها بواسطة Discovery Networks. وحاليًا، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس ورشة عمل المختبرات الميدانية، المعروفة باسم Digital Naturalism Laboratories. في غابة الأمطار في جامboa، بنما، تدمج Dinalab العمل الميداني البيولوجي مع الحرف التكنولوجية ضمن مجتمع من العلماء والفنيين والمهندسين وفناني والمعالجين الحيوانيين المحليين والدوليين. ويشغل حاليًا أيضًا دور المستشار الطلابي كبروفيسور مرتبط في جامعة واشنطن. **نماذج الأساس للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت نماذج الأساس من طريقة جديدة لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أحدث الأبحاث المتعلقة بتمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب (zero-shot) أو من خلال التعديل الدقيق (fine-tuning). وعلى وجه التحديد، سأتناول العمل المشترك حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. من أجل التخلص من الحاجة إلى تدريب مخصص لكل مهمة والتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج الرؤية المسبقة التدريب. كما سأناقش أيضًا العمل المشترك المتعلق بتمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الأوامر التي تتطلب فهمًا شاملاً مكانياً وزمنياً: حيث تواجه النماذج متعددة الوسائط صعوبة في الإجابة على أوامر تشير إلى 1) بيئة كاملة يمكن لوكيل مزود بنموذج MLLM العمل فيها؛ وفي نفس الوقت تشير أيضاً إلى 2) إجراءات حديثة حدثت للتو وتم ترميزها في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكاني والزماني مهم للوكلاء الذين يعملون في العالم الحقيقي. ويتضمن حلنا تطوير خط أنابيب مخصص لجمع البيانات وتعديل نموذج MLLM مزوّد بمشعّات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الأخيرة. *عن المتحدث* [أليكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شمباين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ومواضيع الرؤية الحاسوبية. حصل على بكالوريوس ودبلومه في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ في عام 2014. وبعد ذلك انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى عام 2016. تشمل اهتماماته البحثية مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية حول مواضيع في فهم المشهد، وخوارزميات الاستنتاج والتعلم، والتعلم العميق، وتجهيز الصور واللغة، والنماذج التوليدية. ونالت أطروحته للدكتوراه ميدالية ETH، كما تم منح بحث فريقه جائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** إن كشف الشذوذ يُحدث ثورة في التصنيع والمراقبة، لكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي أن يكشف حقًا عن أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لصنع فرق؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ مشكلات المحاصيل ويحللها باستخدام صحة أوراق البن كمثال رئيسي. سنبدأ بالنظرية الأساسية، ثم ندرس كيف تكتشف هذه النماذج أضرار الصدأ والحفر في صور الأوراق. تشمل الجلسة سير عمل شاملة عملية باستخدام أداة FiftyOne المفتوحة المصدر للرؤية الحاسوبية، وتغطي تنقيح مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وتصور النتائج. ستكتسب فهمًا نظريًا لكشف الشذوذ في الرؤية الحاسوبية، بالإضافة إلى خبرة عملية في تطبيق هذه الأساليب على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) حاصلة على درجة الدكتوراه في الرؤية الحاسوبية وتعلم الآلة، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وهي تعمل منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا على تطوير تقنيات هندسية متكاملة جديدة، تركز أساسًا على الرؤية الحاسوبية، والروبوتات، وتعلم الآلة المطبقة في الزراعة.