انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى متحدثين خبراء حول آخر التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **المكان** فعالية افتراضية. [سجّل حضورك عبر Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية وجود مجموعات بيانات ثلاثية الأبعاد ضخمة ومتنوعة. ولكن جمع وتصنيف سحب نقاط الليدار من العالم الحقيقي بكميات كبيرة أمرٌ مكلفٌ وطويل، خاصة عندما تكون التصنيفات عالية الجودة مطلوبة. يقدم مشروع Paved2Paradise بديلاً اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع يُنتج مجموعات بيانات واقعية ومُصنفة بالكامل مع الحد الأدنى من الجهد البشري في التسمية. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط فحوصات الخلفية (مثل الحقول، الطرق، مواقع البناء) وفحوصات الكائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise تركيب عدد كبير جدًا من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع فحوصات ليدار واسعة النطاق للخلفية، (2) تسجيل فحوصات عالية الدقة لكائنات الهدف في ظروف خاضعة للرقابة، (3) إدخال الكائنات داخل الخلفيات مع وضع وحجب يتماشيان مع القوانين الفيزيائية، و(4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدرّبة على بيانات تم إنشاؤها بواسطة Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتُحقق أداءً قويًا في الكشف مع حاجة أقل بكثير للتصنيف اليدوي مقارنةً بجمع مجموعة البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل أيضًا مرنة—تمكّن الممارسين من التوسع بسهولة إلى فئات أو نطاقات كائنات جديدة عن طريق استبدال فحوصات الخلفية أو الكائنات بغيرها جديدة. بالنسبة لممارسي تعلم الآلة العاملين في مجالات الروبوتات، أو المركبات ذاتية القيادة، أو أنظمة الإدراك الحرجة للأمان، فإن Paved2Paradise يبرز مسارًا عمليًا نحو توسيع بيانات التدريب دون زيادة التكاليف. كما أنه يسد الفجوة بين الأداء في المحاكاة والأداء في العالم الحقيقي، مما يتيح التكرار السريع والنماذج أكثر موثوقية عند النشر. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي للتعلم الآلي في شركة John Deere\، حيث يعمل على تطوير نماذج التعلّم العميق للإدراك باستخدام الليدار والصور RGB في أنظمة حرجة وآنية\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، وكان موضوع أطروحته تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية\، كما يمتلك تخصصًا فرعيًا للدراسات العليا في الرياضيات\. وقد تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، وكانت ورقة \(batter\|pitcher\)2vec الخاصة به فائزة بجائزة في مؤتمر MIT Sloan Sports Analytics Conference عام 2018\. كما ساهم برمجيًا في scikit\-learn وApache Solr\، وحظيت مستودرات GitHub الخاصة به—which تلقّت مجتمعة أكثر من 2\,100 نجمة—بأن تكون نقطة انطلاق لأنشطة بحثية وبرمجية في العديد من المؤسسات المختلفة\. **MothBox: جهاز رصد حشرات منخفض التكلفة، مفتوح المصدر، وآلي** سيتحدث الدكتور آندي كوتميير عن تصميم أداة علمية جديدة ومثيرة ومفتوحة المصدر، وهي Mothbox. يُعد مشروع Mothbox مشروعًا فائزًا بالجوائز لمراقبة الحشرات على نطاق واسع لأغراض التنوع البيولوجي. إنه جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، ويقوم بالتقاط صور فائقة الدقة ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات الحشرية ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن بصدد تطوير إصدار جديد قابل للإنتاج لمشاركة هذه الأداة المهمة في جميع أنحاء العالم. سنناقش تطور هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كوتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل Cartoon Network و IDEO و Smithsonian، ودرّس كأستاذ محاضر في الجامعة الوطنية السنغافورية، وحتى تحولت إحدى أبحاثه إلى برنامج تلفزيوني (ساخر) باسم "Hacking the Wild"، تم توزيعه بواسطة Discovery Networks. في الوقت الحالي، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس ورشة عمل مختبرات Digital Naturalism Laboratories. في غابة Gamboa المطيرة في بنما، تدمج Dinalab العمل الميداني البيولوجي مع الصناعة التكنولوجية ضمن مجتمع من العلماء والفنيين والفنانين المحليين والدوليين ومُعالجي الحيوانات. كما يشرف حاليًا على طلاب كبروفيسور مشارك في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من طريقة جديدة لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث سأناقش أحدث الأبحاث المتعلقة بتمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب (zero-shot) أو عبر التخصيص الدقيق (fine-tuning). وبشكل خاص، سأتناول العمل المشترك حول RELOCATE، وهو خط أساس بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلامات البصرية في مقاطع الفيديو الطويلة. لإزالة الحاجة إلى التدريب الخاص بالمهمة ومعالجة مقاطع الفيديو الطويلة بكفاءة، يستفيد RELOCATE من تمثيل قائم على المناطق مشتق من نماذج بصرية مُدرّبة مسبقًا. كما سأناقش العمل المشترك حول تمكين النماذج الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الأوامر التي تتطلب فهمًا شاملاً مكانياً-زمنياً: فالنماذج MLLMs تجد صعوبة في الإجابة على الأوامر التي تشير إلى 1) البيئة بأكملها التي يمكن لوكيل مزوّد بنموذج MLLM العمل فيها؛ وفي نفس الوقت تشير أيضًا إلى 2) الإجراءات الأخيرة التي حدثت للتو والمُشفّرة في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكاني-الزماني مهم للوكلاء العاملين في العالم الحقيقي. وتشمل حلولنا تطوير خط أنابيب مخصص لجمع البيانات وتدريب نموذج MLLM مجهز بمشعّات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الأخيرة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-แชมبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. حصل على بكالوريوس ودبلومه في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. بعد ذلك انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى عام 2016. تتركز اهتماماته البحثية في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق العلمية حول مواضيع فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. وقد تم منح أطروحته للدكتوراه وسام ETH، وحاز فريقه البحثي على جائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ ثورة في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لصنع فرق؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ مشكلات المحاصيل ويحلل موقعها، باستخدام صحة أوراق القهوة كمثال أساسي. سنبدأ بالنظرية الأساسية، ثم نفحص كيف تكتشف هذه النماذج صدأ الأوراق وأضرار المنقوشة في الصور. تتضمن الجلسة سير عمل شاملة تطبيقية باستخدام مجموعة أدوات الرؤية الحاسوبية FiftyOne مفتوحة المصدر، تشمل تنقيح مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية وعلى خبرة عملية في تطبيق هذه التقنيات على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) حاصلة على درجة الدكتوراه في الرؤية الحاسوبية وتعلم الآلة، ولديها أكثر من 20 سنة من الخبرة في المجال التكنولوجي. تعمل منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا على تطوير تقنيات هندسية متكاملة جديدة، تركز أساسًا على الرؤية الحاسوبية، والروبوتات، وتعلم الآلة المطبقة في الزراعة.