تستفيد الخوارزميات الكمية من المبادئ الأساسية للميكانيكا الكمية—مثل التراكب والتشابك والتشابه—لأداء الحسابات بطرق لا يمكن للخوارزميات الكلاسيكية تحقيقها. يسمح التراكب للبتات الكمية (الكيوبتات) بتمثيل حالات متعددة في آنٍ واحد، مما يمكن من استكشاف مسارات الحوسبة بشكل متوازٍ. ويؤدي التشابك إلى ظهور ارتباطات بين الكيوبتات تتجاوز الحدود الكلاسيكية، ما يسمح بتوزيع ومعالجة المعلومات بشكل غير محلي. ثم تُستخدم التداخلات الكمية لتضخيم السعات الاحتمالية للنتائج الصحيحة، بينما يتم إلغاء النتائج الخاطئة. وعلى عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكسية (وحدات)، ونظرًا لنظرية عدم النسخ، لا يمكنها نسخ حالات كمية عشوائية. وبالتالي، تتطلب تصميمات الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع بيانات مؤقتة أو تنظيم تدفقات الحوسبة. إن نتائج الخوارزميات الكمية احتمالية بطبيعتها، وتظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب العديد من المحاولات للحصول على إجابات ذات ثقة عالية. تعتمد العديد من الخوارزميات الكمية على الأوراكل—دوال صندوق أسود خاصة—لتوجيه عمليات البحث أو اتخاذ القرارات، كما في خوارزمية جروفر. ويمكن لهذه الخوارزميات أن تحقق تسريعات دراماتيكية: فخوارزمية جروفر توفر مكاسب تربيعية في مهام البحث، في حين توفر خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء وفقدان التماسك، ما يجعل التصحيح الخاطئ وتصميم الدوائر المتسامحة مع الأخطاء أمرًا ضروريًا. باختصار، تمثل الخوارزميات الكمية تحولًا جوهريًا في الحوسبة، حيث تستفيد من موارد كمية فريدة لمعالجة المشكلات التي يصعب حلها باستخدام الأجهزة الكلاسيكية.