**🚀 لقاء أبوظبي للتعلم الآلي – انطلاقة الموسم @ مقهى كولناجو** يسعدنا استئناف **لقاء أبوظبي للتعلم الآلي** مع موسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناجو في جزيرة الهضيريّات** — وهو مكان واسع وترحيبي مثالي للعروض التقنية والشبكات والعصائر. يجمع هذا الحدث الباحثين والمتخصصين وهواة **التعلم الآلي، الذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية والصناعية ومختبرات الأبحاث الداعمة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا أو مجرد شخص مهتم بالذكاء الاصطناعي، فستجد شيئًا لتتعلمه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **المكان:** مقهى كولناجو، جزيرة الهضيريّات، أبوظبي * **التسجيل:** مجاني (مطلوب التأكيد) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل والتواصل * **6:30 – 8:00 مساءً** → عروض تقنية (3 محاضرين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة وتفاعل غير رسمي **🎤 البرنامج** ### **المحاضرة 1: الحل الذي احتل المركز الثاني في مسابقة كاجل: توقع بيانات السوق الفورية لـ Jane Street** **المحاضر:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة نهجًا شاملاً من البداية إلى النهاية وراء حصولي على المركز الثاني في مسابقة كاجل Jane Street Real-Time Market Data Forecasting. تعكس مجموعة البيانات والإعداد بدقة واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط الإنتاج الكامل، وأسلط الضوء على النتائج المثيرة التي تم التوصل إليها أثناء تطوير النماذج ضمن هذه الظروف. **نبذة قصيرة** باتريك يام هو باحث كمي وحائز على لقب كبير الأساتذة في مسابقات كاجل. يحمل درجة الماجستير في علوم البيانات والتحليلات (جامعة كارديف، المملكة المتحدة) وفي الهندسة النقلية (جامعة هونغ كونغ). يتخصص باتريك في التعلم الآلي للتنبؤ المالي، ويمتلك خبرة في نمذجة السلاسل الزمنية والتعلم العميق وأنظمة التنبؤ الفورية. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المحاضر:** مُراد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** دفع التعلم الآلي تقدمًا كبيرًا في مجال إدراك القيادة الذاتية، بدءًا من كشف الكائنات وتتبعها وصولاً إلى دمج المستشعرات والتنبؤ. ومع ذلك، فإن النماذج التي تحقق أداءً ممتازًا في الاختبارات غالبًا ما تفشل في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في إدراك القيادة الذاتية. سنغطي خط سير الإدراك (المستشعرات، الكشف، التتبع، الدمج) ونسلط الضوء على التحديات مثل تغير المجال، المعايرة، فجوات المحاكاة مقابل الواقع، ومقايضات الدقة مقابل الأداء الفوري. تم تصميم الجلسة لتزويد الحضور بفهم عام لإدراك القيادة الذاتية، بالإضافة إلى رؤى عملية حول سبب صعوبة «الـ 10٪ الأخيرة» من المشكلة. **نبذة قصيرة** مُراد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) بجامعة خليفة. يحمل بكالوريوس في هندسة الحاسوب (2021) وماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ في القيادة الذاتية، ولديه خبرة عملية في دمج ليزر-كاميرا، وكشف ثلاثي الأبعاد، وتتبع الكائنات المتعددة، والتنبؤ بالمسارات. ### **المحاضرة 3: FinChain وما بعدها: نحو الاستدلال المالي الشفاف في الذكاء الاصطناعي** **المحاضر:** زهوهان شي، باحث في MBZUAI **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تقوم بالاستدلال في المشكلات المالية بطريقة شفافة وقابلة للتدقيق؟ في هذه المحاضرة، سأقدم FinChain، وهو معيار رمزي جديد يقيّم قدرات النمذجة اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. يغطي FinChain 54 موضوعًا متنوعًا — من حسابات الفوائد المركبة والضرائب إلى تحليل بيانات التدفق النقدي — ويُعد اختبارًا شاملاً للاستدلال الرمزي في السياقات المالية الحساسة. من خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، يُسلط الضوء على كيفية «تفكير» النماذج — وأين تفشل. كما سأحدد الاتجاهات المستقبلية في تطوير نماذج مالية تركّز على الاستدلال وتوائم بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الحقيقي. **نبذة قصيرة** زهوهان شي هو باحث ما بعد الدكتوراه في MBZUAI، يعمل مع البروفيسور برسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. نُشرت أعماله في أبرز المؤتمرات في مجال معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، ويشغل حاليًا مناصب قيادية في مبادرات جديدة تتعلق بالاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، حيث ركزت أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة. ## ℹ️ ماذا تتوقع * **العروض:** محاضرات تقنية ولكنها مفهومة حول أحدث المواضيع في ML/AI * **المجتمع:** فرصة للقاء الزملاء من الأوساط الأكاديمية والصناعية ومختبرات البحث الحكومية * **المشروبات:** يتم توفيرها من قبل مقهى كولناجو (شكرًا لرعاةنا) * **أحضر:** فضولك، أسئلتك وبطاقات العمل (إذا أردت التواصل) ## 🎯 من يجب أن يشارك؟ * الباحثون والمهندسين في ML/AI * علماء البيانات ومطوري البرمجيات * الطلاب والمهنيين المبتدئين المهتمين بالذكاء الاصطناعي التطبيقي * المهنيين في الصناعة الذين يستكشفون تطبيقات التعلم الآلي