تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
[in-person] لقاء أبوظبي لتعلم الآلة الموسم 6 الحلقة 163676664983298110
مجاني
المفضلة
مشاركة

[in-person] لقاء أبوظبي لتعلم الآلة الموسم 6 الحلقة 1

addressC88X+XV Abu Dhabi - United Arab Emirates

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

**🚀 لقاء أبوظبي لتعلم الآلة – انطلاقة الموسم @ مقهى كولناغو** نحن متحمسون لإعادة إطلاق **لقاء أبوظبي لتعلم الآلة** مع موسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهدية** — وهو مكان واسع وترحيبي مثالي للعروض التقنية، وبناء العلاقات، والمشروبات المنعشة. يجمع هذا الحدث الباحثين والمتخصصين وهواة **تعلم الآلة، والذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعة، ومعامل الأبحاث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا، أو فقط مهتمًا بالذكاء الاصطناعي، فستجد شيئًا لتتعلمه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **المكان:** مقهى كولناغو، جزيرة الهدية، أبوظبي * **التسجيل:** مجانًا (يتطلب الحجز المسبق) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل، وبناء العلاقات * **6:30 – 8:00 مساءً** → عروض تقنية (3 متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة، وتفاعل غير رسمي **🎤 البرنامج** ### **المحاضرة 1: الحل الذي حصل على المركز الثاني في مسابقة كاجل: التنبؤ ببيانات السوق في الوقت الفعلي من Jane Street** **المتحدث:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة نهجًا شاملاً من البداية إلى النهاية وراء الحل الذي حصل على المركز الثاني في مسابقة كاجل "Jane Street Real-Time Market Data Forecasting". تعكس مجموعة البيانات والإعداد بدقة واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط الإنتاج بالكامل وأسلط الضوء على النتائج المهمة المستخلصة من تطوير النماذج في هذه الظروف. **نبذة قصيرة** باتريك يام هو باحث كمي وحائز على لقب بطل كبرى مسابقات كاجل. حصل على درجتي الماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) وهندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في تعلم الآلة للتنبؤات المالية، مع خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المتحدث:** مُرَاد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** لقد حقق تعلم الآلة تقدمًا كبيرًا في إدراك القيادة الذاتية، بدءًا من اكتشاف الكائنات وتتبعها، وصولاً إلى دمج المستشعرات والتنبؤ. ومع ذلك، فإن النماذج التي تؤدي بشكل ممتاز في الاختبارات غالبًا ما تفشل في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنتناول خط إنتاج الإدراك (المستشعرات، الكشف، التتبع، الدمج) ونسلط الضوء على التحديات مثل التحول بين المجالات، ومعايرة الأجهزة، والفجوة بين المحاكاة والواقع، ومقايضات الدقة مقابل الأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام لإدراك القيادة الذاتية، بالإضافة إلى رؤى عملية حول سبب كون "الـ 10٪ الأخيرة" من المشكلة هي الأصعب غالبًا. **نبذة قصيرة** مُرَاد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) في جامعة خليفة. حصل على درجة البكالوريوس في هندسة الحاسوب (2021) والماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ في القيادة الذاتية، مع خبرة عملية في دمج بيانات ليزر الكاميرا، والكشف ثلاثي الأبعاد، وتتبع الكائنات المتعددة، وتوقع المسارات. ### **المحاضرة 3: فينشين و ما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تستطيع التفكير في المشكلات المالية بطريقة شفافة وقابلة للتدقيق؟ في هذه المحاضرة، سأقدم فينشين (FinChain)، وهو معيار رمزي جديد يقيّم قدرات النمذجة اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. ويغطي فينشين 54 موضوعًا متنوعًا — من حسابات الفوائد المركبة والضرائب إلى تحليل بيانات التدفق النقدي — ليوفر بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية الحساسة. ومن خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، يُلقي الضوء على طريقة تفكير النماذج — وأماكن فشلها. كما سأحدد الاتجاهات المستقبلية لتطوير نماذج مالية تركز على الاستدلال وتوائم بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة قصيرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع الأستاذ بريسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. وقد نُشرت أعماله في أهم المحافل في معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، ويتولى حاليًا مبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، ركزت أطروحته فيها على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة. ## ℹ️ ما الذي يمكن توقعه * **العروض:** محاضرات تقنية ولكن سهلة الفهم حول أحدث المواضيع في تعلم الآلة والذكاء الاصطناعي * **المجتمع:** فرصة للقاء أقرانك من الأوساط الأكاديمية، والصناعة، ووحدات البحث والتطوير الحكومية * **المرطبات:** تُقدَّم من قبل مقهى كولناغو (شكرًا لرعاة الحدث) * **أحضر معك:** الفضول، الأسئلة، وبطاقات العمل (إذا رغبت في بناء علاقات مهنية) ## 🎯 من يجب أن يشارك؟ * الباحثون والمهندسين في مجال تعلم الآلة والذكاء الاصطناعي * علماء البيانات ومطوري البرمجيات * الطلاب والمهنيين المبتدئين المهتمين بالذكاء الاصطناعي التطبيقي * المهنيين في الصناعة الذين يستكشفون تطبيقات تعلم الآلة

المصدر:  meetup عرض المنشور الأصلي

موقع
C88X+XV Abu Dhabi - United Arab Emirates
عرض الخريطة

meetup
كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.