تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
[شخصيًا] اجتماع أبوظبي لتعلم الآلة الموسم 6 الحلقة 163785052832257110
مجاني
المفضلة
مشاركة

[شخصيًا] اجتماع أبوظبي لتعلم الآلة الموسم 6 الحلقة 1

addressC88X+XV Abu Dhabi - United Arab Emirates

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

**🚀 اجتماع أبوظبي لتعلم الآلة – انطلاقة الموسم @ مقهى كولناغو** يسعدنا إعادة بدء **اجتماع أبوظبي لتعلم الآلة** مع موسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهدية** — مكان واسع وترحيبي مثالي للعروض التقنية، وبناء العلاقات، والمشروبات المنعشة. سيجمع هذا الحدث الباحثين والممارسين وهواة **تعلم الآلة، الذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، الصناعية، ومختبرات الأبحاث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا أو مجرد شخص مهتم بالذكاء الاصطناعي، فستجد شيئًا لتتعلمه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **الموقع:** مقهى كولناغو، جزيرة الهدية، أبوظبي * **التسجيل:** مجاني (مطلوب التأكيد) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل، وبناء العلاقات * **6:30 – 8:00 مساءً** → عروض تقنية (3 محاضرين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة، وتبادل غير رسمي للعلاقات **🎤 البرنامج** ### **المحاضرة 1: الحل الذي حصل على المركز الثاني في مسابقة كاجل: تنبؤ بيانات السوق في الوقت الفعلي من Jane Street** **المحاضر:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة نهجًا شاملاً من البداية إلى النهاية وراء الحل الذي حصل على المركز الثاني في مسابقة كاجل "Jane Street Real-Time Market Data Forecasting". تعكس مجموعة البيانات والإعداد الواقعَ الحقيقي لبناء النماذج في الأسواق المالية الحديثة. سأشارك خط الإنتاج الكامل، وأسلط الضوء على النتائج المثيرة للاهتمام المستمدة من تطوير النماذج في ظل هذه الظروف. **نبذة قصيرة** باتريك يام هو باحث كمي وحائز على لقب بطل رئيسي في مسابقات كاجل. حاصل على درجتي الماجستير في علوم البيانات والتحليلات (جامعة كارديف، المملكة المتحدة) وفي هندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في تعلم الآلة للتنبؤ المالي، ويمتلك خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: تحديات إدراك القيادة الذاتية** **المحاضر:** مراد سمريتاب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** حقق تعلم الآلة تقدمًا كبيرًا في مجال إدراك القيادة الذاتية، بدءًا من اكتشاف الكائنات وتتبعها وحتى دمج المستشعرات والتنبؤ. ومع ذلك، فإن النماذج التي تؤدي بشكل ممتاز في الاختبارات غالبًا ما تفشل في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنغطي خط إنتاج الإدراك (المستشعرات، الكشف، التتبع، الدمج)، ونسلط الضوء على التحديات مثل التحول بين المجالات، المعايرة، الفجوة بين المحاكاة والواقع، ومتناقضات الدقة مقابل الأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام لإدراك القيادة الذاتية، بالإضافة إلى رؤى عملية حول سبب صعوبة "الـ 10٪ الأخيرة" من المشكلة. **نبذة قصيرة** مراد سمريتاب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) بجامعة خليفة. يحمل بكالوريوس في هندسة الحاسوب (2021) وماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ في القيادة الذاتية، ولديه خبرة عملية في دمج ليزر-كاميرا، والكشف ثلاثي الأبعاد، وتتبع الكائنات المتعددة، وتوقع المسارات. ### **المحاضرة 3: فينشين و ما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المحاضر:** زهوهان شي، باحث في MBZUAI **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تستطيع الاستدلال في المشكلات المالية بطريقة شفافة وقابلة للتدقيق؟ في هذه المحاضرة، سأقدم فينشين، وهي معيار رمزي جديد لتقييم قدرات النماذج اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. يغطي فينشين 54 موضوعًا متنوعًا — من حسابات الفائدة المركبة والضرائب إلى تحليل قائمة التدفق النقدي — وهو بذلك يوفر بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية ذات المخاطر العالية. ومن خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، يُلقي الضوء على طريقة تفكير النماذج — وأماكن فشلها. كما سأوضح الاتجاهات المستقبلية لتطوير نماذج مالية تركّز على الاستدلال وتوائم بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة قصيرة** زهوهان شي هو باحث ما بعد الدكتوراه في MBZUAI، يعمل مع الأستاذ بريسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. وقد تم نشر أعماله في أهم المؤتمرات في مجال المعالجة اللغوية الطبيعية مثل ACL و EMNLP و NAACL، وهو حاليًا يقود مبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في المعالجة اللغوية الطبيعية من جامعة ملبورن في ديسمبر 2024، حيث ركّزت أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة. ## ℹ️ ماذا تتوقع * **المحاضرات:** عروض تقنية ولكنها سهلة الفهم حول أحدث المواضيع في تعلم الآلة والذكاء الاصطناعي * **المجتمع:** فرصة للقاء الزملاء من الأوساط الأكاديمية، الصناعية، وبحث وتطوير الحكومة * **المشروبات:** يقدمها مقهى كولناغو (شكرًا لرعاةنا) * **احضر معك:** الفضول، الأسئلة، وبطاقات العمل (إذا أردت التواصل) ## 🎯 من يجب أن يشارك؟ * الباحثون والمهندسان في تعلم الآلة والذكاء الاصطناعي * علماء البيانات ومطوري البرمجيات * الطلاب والمهنيون المبتدئون المهتمون بالذكاء الاصطناعي التطبيقي * المهنيون في القطاع الذين يستكشفون تطبيقات تعلم الآلة

المصدر:  meetup عرض المنشور الأصلي

موقع
C88X+XV Abu Dhabi - United Arab Emirates
عرض الخريطة

meetup

قد يعجبك أيضا

كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.